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1. Introduction
The field of compressed sensing was originally established with the publi-
cation of the seminal papers “Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information” [23] by Terence
Tao, Justin Romberg and Emmanuel Candès, and the aptly titled “Com-
pressed sensing” [40] by David Donoho. The research activity by hundreds
of researchers that followed over time transformed the field into a mature
mathematical theory with far-reaching implications in applied mathematics
and engineering alike. While deemed impossible by the celebrated Shannon-
Nyquist sampling theorem, as well as fundamental facts in linear algebra, their
work demonstrated that unique solutions of underdetermined systems of linear
equations do in fact exist if one limits attention to signal sets exhibiting some
type of low-complexity structure. In particular, Tao, Romberg, Candès and
Donoho considered so-called sparse vectors containing only a limited number
of nonzero coefficients, and demonstrated that solving a simple linear program
minimizing the `1-norm of a vector subject to an affine constraint allowed
for an efficient way to recover such signals. While examples of `1-regularized
methods as a means to retrieve sparse estimates of linear inverse problems
can be traced back as far as the 1970’s to work in seismology, the concept was
first put on a rigorous footing in a series of landmark papers [20, 24, 23, 25,
40]. Today, compressed sensing is considered a mature field firmly positioned
at the intersection of linear algebra, probability theory, convex analysis and
Banach space theory.

This chapter serves as a concise overview of the field of compressed
sensing, highlighting some of the most important results in the theory, as
well as some more recent developments. In light of the popularity of the field,
there truly exists no shortage of excellent surveys and introductions to the



2 Niklas Koep Arash Behboodi Rudolf Mathar

topic. We want to point out the following references in particular: [54, 16,
47, 52, 48, 53], which include extended monographs focusing on a rigorous
presentation of the mathematical theory, as well as works more focused on
the application-side, e.g., in the context of wireless communication [60] or
more generally in sparse signal processing [30]. Due to the volume of excellent
references, we decided on a rather opinionated selection of topics for this
introduction. For instance, a notable omission of our text is a discussion on
the so-called Gelfand widths, a concept in the theory of Banach spaces that
is commonly used in compressed sensing to prove the optimality of bounds
on the number of measurements required to establish certain properties of
random matrices. Moreover, in the interest of space we opted to omit most of
the proofs in this chapter, and instead make frequent reference to the excellent
material found in the literature.

Organization
Given the typical syllabus of introductions to compressed sensing, we decided
to go a slightly different route than usual by motivating the underlying
problem from an extended view at the problem of individual vector recovery
before moving on to the so-called uniform recovery case which deals with the
simultaneous recovery of all vectors in a particular signal class at once.

In Section 2, we briefly recall a few basic definitions about norms and
random variables. We also define some basic notions about so-called subgaus-
sian random variables as they play a particularly important role in modern
treatments of compressed sensing.

In Section 3, we introduce a variety of signal models for different applica-
tions and contexts. To that end, we adopt the notion of simple sets generated
by so-called atomic sets, and the associated concept of atomic norms which
provide a convenient abstraction for the formulation of non-uniform recovery
problems in a multitude of different domains. In the context of sparse recovery,
we also discuss the important class of so-called compressible vectors as a
practical alternative to exactly sparse vectors to model real-world signals such
as natural images, audio signals, and the like.

Equipped with the concept of the atomic norm which gives rise to a
tractable recovery program of central importance in the context of linear
inverse problems, we discuss in Section 4 conditions for perfect or robust
recovery of low-complexity signals. We also comment on a rather recent
development in the theory which connects the problem of sparse recovery
with the field of conic integral geometry.

Starting with Section 5, we finally turn our attention to the important
case of uniform recovery of sparse or compressible vectors where we are
interested in establishing guarantees which—given a particular measurement
matrix—hold uniformly over the entire signal class. Such results stand in stark
contrast to the problems we discuss in Section 4 where recovery conditions
are allowed to locally depend on the choice of the particular vector one aims
to recover.
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In Section 6, we introduce a variety of properties of sensing matrices
such as the null space property and the restricted isometry property which are
commonly used to assert that recovery conditions as teased in Section 5 hold
for a particular matrix. While the deterministic construction of matrices with
provably optimal number of measurements remains a yet unsolved problem,
random matrices—including a broad class of structured random matrices—
which satisfy said properties can be shown to exist in abundance. We therefore
complement our discussion with an overview of some of the most important
classes of random matrices considered in compressed sensing in Section 7.

We conclude our introduction to the field of compressed sensing with
a short survey of some of the most important sparse recovery algorithms in
Section 8.

Motivation
At the heart of compressed sensing (CS) lies a very simple question. Given a
d-dimensional vector x̊, and a set of m measurements of the form yi = 〈ai, x̊〉,
under what conditions are we able to infer x̊ from knowledge of

A =
(
a1, . . . ,am

)> and y = (y1, . . . , ym)>

alone? Historically, the answer to this question was “as soon as m ≥ d”
or more precisely, as soon as rank(A) = d. In other words, the number of
independent observations of x̊ has to exceed the number of unknowns in x̊,
namely the dimension of the vector space V containing it. The beautiful
insight of compressed sensing is that this statement is actually too pessimistic
if the information content in x̊ is less than d. The only exception to this rule
that was known prior to the inception of the field of compressed sensing was
when x̊ was known to live in a lower-dimensional linear subspace W ⊂ V
with dim(W ) ≤ d. A highly oversimplified summary of the contribution
of compressed sensing therefore says that the field extended the previous
observation from single subspaces to unions of subspaces. This interpretation
of the set of sparse vectors is therefore also known as the union-of-subspaces
model. While sparsity is certainly firmly positioned at the forefront of CS
research, the concept of low-complexity models encompasses many other
interesting structures such as block- or group-sparsity, as well as low-rank
matrices to name a few.

We will comment on such signal models in Section 3. As hinted at before,
the recovery of these signal classes can be treated in a unified way using the
atomic norm formalism (cf. Section 4) as long as we are only interested in
non-uniform recovery results. Establishing similar results which hold uniformly
over entire signal classes, however, usually requires more specialized analyses.
In the later parts of this introduction, we therefore limit our discussions to
sparse vectors. Note that while more restrictive low-complexity structures
such as block- or group-sparsity overlap with the class of sparse vectors, the
recovery guarantees obtained by merely modeling such signals as sparse are
generally suboptimal as they do not exploit all latent structure inherent to
their respective class.
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Before moving on to a more detailed discussion of the most common
signal models, we briefly want to comment on a particular line of research
that deals with low-complexity signal recovery from nonlinear observations.
Consider an arbitrary univariate, scalar-valued function f acting element-wise
on vectors:

y = f(Ax). (1)
An interesting instance of Equation (1) is when f models the effects of an
analog-to-digital converter (ADC), mapping the infinite-precision observations
Ax on a finite quantization alphabet. Since this extension of the linear observa-
tion model gives rise to its very own set of problems which require specialized
tools beyond what is needed in the basic theory of compressed sensing, we
will not discuss this particular measurement paradigm in this introduction.
A good introduction to the general topic of nonlinear signal recovery can be
found in [96]. For a detailed survey focusing on the comparatively young field
of quantized compressed sensing, we refer interested readers to [17].

2. Preliminaries
Compressed sensing builds on various mathematical tools from linear algebra,
optimization theory, probability theory and geometric functional analysis. In
this section, we review some of the mathematical notions used throughout
this chapter.

2.1. Norms and Quasi-Norms
The vectors we consider in this chapter are generally assumed to belong to a
finite or infinite dimensional Hilbert space H, i.e., a vector space endowed
with a bilinear form 〈·, ·〉 : H×H → R known as inner product, which induces
a norm on the underlying vector space by1

‖x‖ =
√
〈x,x〉.

The d-dimensional Euclidean space Rd is an example of a vector space with
the inner product between x,y ∈ Rd defined as

〈x,y〉 = x>y =
d∑
i=1

xiyi.

The norm induced by this inner product corresponds to the so-called `2-norm.
In general, the family of `p-norms on Rd is defined as

‖x‖p =


(∑d

i=1 |xi|p
)1/p

, p ∈ [1,∞)
maxi∈[d] |xi|, p =∞.

Note that the `2-norm is the only `p-norm on Rd that is induced by an
inner product since it satisfies the parallelogram identity. One can extend the
1Technically, a Hilbert space is an inner product space in which every Cauchy sequence
converges to a point in the same space.
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definition of `p-norms to the case p ∈ (0, 1). However, the resulting “`p-norm”
ceases to be a proper norm as it no longer satisfies the triangle inequality.
Instead, the collection of `p-norms for p ∈ (0, 1) defines a family of quasinorms
which satisfy the weaker condition

‖x + y‖p ≤ 21/p−1(‖x‖p + ‖y‖p).
Additionally, we will make frequent use of the egregiously termed `0-norm of
x which is defined as the number of nonzero coefficients,

‖x‖0 = lim
p→0
‖x‖pp = |supp(x)|.

Note that the `0-norm, as a measure of sparsity of a vector, is neither a norm
nor a quasinorm (or even a seminorm) as it is not positively homogeneous. As
we will see later, both the `1-norm, and the `p-quasinorms are of particular
interest in the theory of compressed sensing. The `p-unit ball, defined as

Bdp =
{

x : ‖x‖p ≤ 1
}
,

forms a convex body for p ≥ 1 and a nonconvex one for p ∈ (0, 1). Some
examples of the `p-unit balls are given in Figure 1.

p = 1
2 p = 1 p = 2 p =∞

Figure 1. The `p-unit balls in R2

Another commonly used space in compressed sensing is the space of linear
transformations from Rd to Rm. This particular function space is isomorphic
to the collection of Rm×d matrices, and forms a vector space on which we can
define an inner product via

〈A,B〉 = tr(A>B).
The norm induced by this inner product is called the Frobenius norm and is
given by

‖A‖F =
√

tr(A>A) =
√∑
i∈[d]

∑
j∈[m]

a2
ij .

In this context, the inner product above is also known as the so-called Frobenius
inner product. Another commonly used norm defined on the space of linear
transformations is the operator norm

‖A‖p→q = sup
‖x‖p≤1

‖Ax‖q.
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In particular, the operator norm ‖A‖2→2 between two normed spaces equipped
with their respective `2-norm, is given by the maximum singular value of A
denoted by σmax(A).

2.2. Random Variables, Vectors and Matrices
Let (Ω,Σ,P) be a probability space consisting of the sample space Ω, the
Borel measurable event space Σ, and a probability measure P : Σ → [0, 1].
The space of matrix-valued, Borel measurable functions from Ω to Rm×d
are called random matrices. This space inherits a probability measure as the
pushforward of the measure P. For d = 1, we obtain the set of random vectors;
the space of random variables corresponds to the choice m = d = 1. For every
scalar random variable X, there exists a function

MX(t) = EetX , t ∈ R,

which fully determines the distribution of X. This function is known as the
Moment Generating Function (MGF) of X. The p-th absolute moment of a
random variable X is defined as

E|X|p =
∫

Ω
|X(ω)|pdP(ω).

The p-th absolute moment leads to the notion of the so-called Lp norm

‖X‖Lp = (E|X|p)1/p

which turns the space of random variables equipped with ‖·‖Lp into a normed
vector space. A particular class of random variables which finds widespread
use in compressed sensing are the so-called subgaussian random variables
whose Lp norm increases at most as √p. The name subgaussian is owed by
the fact that subgaussian random variables have tail probabilities which decay
at least as fast as the tails of the Gaussian distribution [97]. More precisely,
a random variable X is called subgaussian if it satisfies one of the following
equivalent properties:
a) The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp(−t2/K2
1 ) ∀t ≥ 0.

b) The absolute moments of X satisfy:

(E|X|p)1/p ≤ K2
√
p ∀p ≥ 1.

c) The super-exponential moment of X satisfies:

E exp(X2/K2
3 ) ≤ 2.

d) If EX = 0, the MGF of S satisfies

E exp(tX) ≤ exp(K2
4 t

2) ∀t ∈ R.

The parameters Ki > 0 for i = 1, 2, 3, 4 differ from each other by at most a
constant factor, which, in turn deviate only by a constant factor from the
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so-called subgaussian norm ‖·‖ψ2
. Given a random variable X, the subgaussian

norm is defined as

‖X‖ψ2
= inf {s > 0 : Eψ2(X/s) ≤ 1},

where ψ2(t) = exp(t2)−1 is called an Orlicz function. The subgaussian random
variables defined on a common probability space therefore form a normed
space known as Orlicz space. Another equivalent definition of the subgaussian
norm is

‖X‖ψ2
= sup

p≥1

1
√
p

(E|X|p)1/p.

As a consequence of this definition and Property b) above, a random vari-
able is subgaussian if its subgaussian norm is finite. For instance, the sub-
gaussian norm of a Gaussian random variable X ∼ N(0, σ2) is—up to a
constant—multiplicatively bounded from above by σ. The subgaussian norm
of a Rademacher random variable is given by ‖X‖ψ2

= 1/
√

log 2. Gaussian
and Bernoulli random variables are therefore typical instances of subgaussian
random variables. Other examples include random variables following the
Steinhaus2 distribution, as well as any bounded random variables in general.

A convenient property of subgaussian random variables is that their tail
probabilities can be expressed in terms of their subgaussian norm:

P(|X| ≥ t) ≤ 2 exp
(
− ct2

‖X‖2ψ2

)
∀t > 0.

If Xi ∼ N(0, σ2
i ) are independent Gaussian random variables, then due to

the rotation invariance of the normal distribution, the linear combination
X =

∑
iXi is still a zero-mean Gaussian random variable with variance∑

i σ
2
i . This property also extends to subgaussians barring a dependence a

multiplicative constant, i.e., if (Xi)i is a sequence of centered subgaussian
random variables, then ∥∥∥∥∥∑

i

Xi

∥∥∥∥∥
2

ψ2

≤ C
∑
i

‖Xi‖2ψ2
.

This can easily be shown with the help of the Moment Generating Function
of X =

∑
iXi. The rotational invariance along with the tail property of

subgaussian distributions makes it possible to generalize many familiar tools
such as Hoeffding-type inequalities to subgaussian distributions, e.g.,

P

(∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2∑

i‖Xi‖2ψ2

)
∀t > 0.

Finally, we say that a random vector X ∈ Rm is subgaussian if the
random variable X = 〈X,y〉 is subgaussian for all y ∈ Rm. In that case, the

2A Steinhaus random variable is a complex random variable distributed uniformly on the
complex unit circle.
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subgaussian norm of X is defined as
‖X‖ψ2

= sup
y∈Sm−1

‖〈X,y〉‖ψ2
.

Moreover, a random vector X is called isotropic if E|〈X,y〉|2 = ‖y‖22 for all
y ∈ Rm. A random matrix A is called subgaussian if its entries are independent
zero mean subgaussian random variables.

3. Signal Models
As a basic framework for the types of signals discussed in this introduction,
we decided to adopt the notion of so-called atomic sets as coined by Chan-
drasekaran, Recht, Parrilo, and Willsky in [31]. This serves two purposes.
First, it elegantly emphasizes the notion of low complexity of the signals one
aims to recover or estimate in practice. Secondly, the associated notion of
atomic norm (cf. Definition 3.2) provides a convenient way to motivate certain
geometric ideas in the recovery of low-complexity models. Let us emphasize
that this viewpoint is not necessarily required when discussing so-called uni-
form recovery results where one is interested in conditions allowing for the
recovery of entire signal classes given a fixed draw of a measurement matrix
(cf. Section 7). However, the concept provides a suitable level of abstraction
to discuss recovery conditions for individual vectors of a variety of different
interesting signal models in a unified manner which were previously studied
in isolation by researchers in their respective fields.

As alluded to in the motivation, one of the most common examples
of a “low-complexity” structure of a signal x̊ ∈ Cd is the assumption that
it belongs to a lower-dimensional subspace of dimension k. Given a matrix
U ∈ Cd×k whose columns ui span said subspace, and the linear measurements
y = Ax, we may simply solve the least-squares problem

minimize
c∈Ck

‖y−AUc‖2 (2)

to recover x̊ = Uc? where the solution c? of Problem (2) admits a closed-form
expression in terms of the Moore-Penrose pseudoinverse of AU. Once again,
this strategy succeeds if m ≥ dim span({ui}ki=1), i.e., if we obtain at least
as many measurements as the subspace dimension. As a canonical example,
assume that U corresponds to the identity matrix I restricted to the columns
indexed by a set S ⊂ [d] of cardinality |S| = k, i.e., U = IS . The columns of
this matrix form a basis for a k-dimensional coordinate subspace of Cd. If we
lift the restriction that x̊ lives in this particular subspace, and rather assume
instead that x̊ belongs to any of the

(
d
k

)
coordinate subspaces of dimension

k, we arrive at a special case of the so-called union-of-subspaces model. In
particular, we have

x̊ ∈
⋃

S⊂[d]
|S|=k

WS =: Σk
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where WS denotes the coordinate subspace of Cd with basis matrix IS . The
set Σk therefore corresponds to the set of sparse vectors supported on an
index set S of cardinality at most k. This signal class represents a central
object of study in the field of compressed sensing.

Equipped with the knowledge that x̊ lives in one of the k-dimensional
coordinate subspaces, one could attempt to recover x̊ by solving Problem (2)
for each WS independently. However, even though the true solution x̊ must
be among these least-squares solutions, there is no way for us to identify the
correct one. Moreover, even for moderately-sized problems, the number

(
d
k

)
of least-squares projections one needs to solve becomes unreasonably high.
On the other hand, ignoring the information that x̊ lives in k-dimensional
subspace, and instead solving the least-squares minimization problem

minimize
x∈Cd

‖y−Ax‖2

will not help either since the `2-norm we are minimizing tends to spread
the signal energy over the entire support of the minimizer x? (see, e.g., the
discussion in [19, Section 6.1.2]). We will discuss in Section 5 that all these
issues can be resolved by imposing certain structural constraints on the
measurement matrix A, and replacing the optimization problem (2) with one
that explicitly promotes the structure inherent in x̊.

We will come back to the sparse signal model shortly. First, however,
let us introduce a more flexible notion of low-complexity structures which
will allow us to talk about recovery problems of more general signal models
in a unified framework. As outlined above, if K denotes a k-dimensional
subspace, then every vector in K can be represented as a sum of k basis
vectors. To capture a similar notion of dimensionality for more general sets
which do not necessarily form a subspace, we may assume that every vector in
K can at least be represented as a linear combination of a limited number of
elements in a more general generating set. While a finite-dimensional subspace
is always fully determined by a finite collection of basis vectors, we now lift
this finiteness requirement. In particular, the set of basis vectors from before
is now replaced with an arbitrary compact set. The signal models generated
in this fashion are simply referred to as simple sets.

Definition 3.1 (Simple set). Let A ⊂ Cd be an origin-symmetric compact set,
and k ∈ N. Then a set K ⊂ Cd of vectors of the form

x =
k∑
i=1

ciai, ci ≥ 0,ai ∈ A (3)

is called a simple set. Considering that elements in K are conic combinations
of at most k elements in A, we will also write K = conek(A). Moreover, since
K is generated by the set A, we call A an atomic set.

We will discuss how this notion of simplicity leads to many familiar
models in the literature on linear inverse problems. As a canonical example,
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however, consider the case A = {±ei} ⊂ Rd. The simple set K generated by
conek(A) then corresponds to the set Σk(Rd) of k-sparse vectors.

Given an atomic set A, we associate with it the following object.

Definition 3.2 (Atomic norm). The function

‖x‖A = inf
{∑

a∈A
ca : x =

∑
a∈A

caa, ca ≥ 0 ∀a ∈ A
}

associated with an atomic set A ⊂ Cd is called the atomic norm of A at x.

This definition corresponds to the so-called Minkowski functional or
gauge of the set conv(A) [85, Chapter 15],

γconv(A)(x) = inf {t > 0 : x ∈ t conv(A)} = ‖x‖A.

The norm notation ‖·‖A is justified here since we assumed A to be compact
and centrally-symmetric. This ensures that it contains an open set containing
the origin in which case ‖·‖A = γconv(A)(·) defines a norm on Cd. With this
definition in place, the general strategy to recover a simple vector x̊ ∈ K =
conek(A) from its linear measurements y = Ax̊ is

minimize
x

‖x‖A
s.t. y = Ax.

(ANM)

We will discuss in Section 4 why Problem (ANM), which we will simply refer
to as atomic norm minimization, allows for the recovery of simple sets from
underdetermined linear measurements.

In the remainder of this section, we will introduce some of the most
common low-complexity sets discussed in the literature. We limit our discussion
to sparse vectors, block- and group-sparse vectors, as well as low-rank matrices.
Note, however, that the atomic norm framework allows for modelling many
other interesting signal classes beyond the ones discussed here. These include
permutation and cut matrices, eigenvalue-constrained matrices, low-rank
tensors, and binary vectors. We specifically refer interested readers to [31,
Section 2.2] for a more comprehensive list of example applications of atomic
sets.

3.1. Sparse Vectors
As we highlighted various times at this point, the most widespread notion of
low complexity at the heart of CS is the notion of sparsity. Even before the
advent of compressed sensing, exploiting low complexities in signals played a
key role in the development of most compression technologies such as MP3,
JPEG or H264. Ultimately, all these technologies are based on the idea
that most signals of interest usually live in rather low-dimensional subspaces
embedded in high-dimensional vector spaces3. Two canonical examples of this
phenomenon are the superposition of sine waves, and natural images. In the
former case, it is obvious that we are only able to infer very little information

3This idea also extends to signals living on low-dimensional manifolds.
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from glancing at a time series plot of a sound wave recorded at a microphone.
For instance, we might be able to say when a signal is made up of mostly low-
frequency components if its waveform only appears to change very slowly over
time, but for most signals we are usually not able to say much beyond that.
The situation changes drastically, however, if we instead inspect the signal’s
Fourier transform. In the example of superimposed sine waves, the inherent
simplicity or low complexity of the signal becomes immediately apparent in
the form of a few isolated peaks in the Fourier spectrum of the signal, revealing
the true low complexity structure of the signal. A similar observation can be
made for natural images where periodic structures—say a picture of a garden
fence or a brick wall—or flat, homogeneous textures—say in images featuring
a view of the sky or blank walls—lead to sparse representations in a variety of
bases such as the discrete Fourier transform (DFT) basis, the discrete cosine
transform (DCT) basis or the extended family of x-let systems, e.g., wavelets
[67], curvelets [26], noiselets [34], shearlets [64], and so on.

Formally, the set of sparse vectors is simply defined as the set of vectors
in Cd with at most k nonzero coefficients. For convenience, this is mostly
defined mathematically with the help of the `0-pseudonorm4

‖x‖0 := |supp(x)| = |{i ∈ [d] : xi 6= 0}|.

With this definition, the set of all k-sparse vectors is defined as

Σk = {x : ‖x‖0 ≤ k}.

As we discussed in the beginning of Section 3, the set Σk is a collection of(
d
k

)
k-dimensional subspaces, each one spanned by k canonical basis vectors.

Since it is a union and not a sum of subspaces, the set is highly nonlinear in
nature, e.g., the sum of two k-sparse vectors is generally 2k-sparse in case the
vectors are supported on disjoint support sets.

Consider again the linear inverse problem in which we are tasked with
inferring x̊ ∈ Σk from its measurements y = Ax̊. As we motivated before, if
the support of the k-sparse vector is known, so is the corresponding subspace,
and the signal can be easily recovered via a least-squares projection. If on
the other hand we assume that the support is not known, the situation
becomes dire as we now have to consider intractably many possible subspaces.
To get a feeling for the complexity of the set of sparse vectors, consider
for some c ∈ R the set

{
x ∈ Rd : ‖x‖0 = k, xi = c ∀i ∈ supp(x)

}
⊂ Σk, i.e.,

the set of exactly k-sparse vectors with identical nonzero entries. A random
vector uniformly drawn from this set has entropy log

(
d
k

)
, which means that5

log
(
d
k

)
≈ k log (d/k) bits are required for effective compression of this set [88].

As we will see in Section 4 and 7, the expression k log(d/k) plays a key role
in the theory of compressed sensing.

4The object ‖·‖0 is neither a semi- nor a quasinorm as it is clearly not positively homogeneous,
i.e., for t > 0 we have ‖tx‖0 = ‖x‖0 6= t‖x‖0.
5This follows from the classical bound

(
d
k

)k
≤
(

d
k

)
≤
(

ed
k

)k
.
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To frame the set of sparse vectors in the language of simple sets as
established in the beginning of Section 3, we note that the atomic set corre-
sponding to the set of sparse vectors in Rd is simply the set of signed unit
vectors, i.e., A = {±ei}6. Since the convex hull of A clearly corresponds to
the `1-unit ball, we have Σk(Rd) = conek(A). The atomic norm associated
with this set is simply the `1-norm on Rd. This easily follows from expanding
a vector in terms of the elements of A as

x =
d∑
i=1
|xi| sgn(xi)ei︸ ︷︷ ︸

∈A

.

Then we have with Definition 3.2 that

‖x‖A = inf
{∑

a∈A
ca :

∑
a∈A

caa, ca ≥ 0
}

=
d∑
i=1
|xi| = ‖x‖1.

While there are infinitely many ways to express each coordinate xi in terms of
nonnegative linear combinations of the atoms ei and −ei, the infimum in the
definition of ‖·‖A is attained when each coordinate is expressed by exactly
one element of A. This follows immediately from the triangle inequality.

Compressible Vectors. While the concept of sparsity arises naturally in an
abundance of contexts and applications, in many cases it is also a slightly too
stringent model for practical purposes. A canonical example are natural images
which certainly exhibit a low complexity structure if expressed in a suitable
sparsity basis. However, this basis expansion is usually not perfect. In other
words, by close inspection one usually notices that while the majority of the
signal energy concentrates in only a limited number of expansion coefficients,
there usually also exist many coefficients with non-negligible amplitudes which
carry information about fine structures of images. Nevertheless, a histogram of
the transform coefficients usually reveals that the negligible coefficients quickly
decay such that natural images are still be well-approximated by sparse vectors.
This concept, which leads us to the class of so-called compressible vectors,
is also heavily exploited in image compression algorithms which quantize
infrequently occurring transform coefficients more aggressively (i.e., more
coarsely) than more dominant ones such as DC coefficients.

Formally, let x ∈ Cd be a vector whose k largest components in absolute
value are supported on a set S ⊂ [d] of size k, and define for p > 0 the best
k-term approximation error σk(·)p : Cd → R≥0 as

σk(x)p = min
z∈Σk

‖x− z‖p. (4)

6To define the sparse vectors on Cd, simply replace {±en} by {±en,±ien}.
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For any p > 0, the minimum in Equation (4) is attained by the vector z
which agrees with x on S and vanishes identically on S. The following result
characterizes the decay behavior of the approximation error.

Theorem 3.1 ([54, Theorem 2.5]). Let q > p > 0. Then for any x ∈ Cd, the
best k-term approximation error w. r. t. the `q-norm is bounded by

σk(x)q ≤
cp,q

k1/p−1/q ‖x‖p (5)

with

cp,q = exp
(
−hb(p/q)

p

)
≤ 1,

and hb(x) = −x log(x)−(1−x) log(1−x) denoting the binary entropy function.
In particular, we have

σk(x)2 ≤
1

2
√
k
‖x‖1.

The set of vectors which can be well approximated in terms of σk
are called compressible vectors. Informally, this means that a vector x is
compressible if σk(x)p quickly decays as k increases. One particular set of
vectors which exhibit such a rapid error decay are the elements of the `q-
quasinorm balls

Bdq :=
{

z ∈ Cd : ‖z‖q ≤ 1
}

with 0 < q ≤ 1. To see why the `q-quasinorm balls are suitable proxies for
sparse vectors, consider the limiting behavior of the quasinorm. For q → 0 we
have

lim
q→0
‖x‖qq = lim

q→0

d∑
i=1
|xi|q

=
d∑
i=1

1{xi 6=0}

= |{i ∈ [d] : xi 6= 0}|
= ‖x‖0.

In the other limiting case, one obtains the set of unit `1-norm vectors. Moreover,
applying Theorem 3.1 to the case of `q-norm balls, we find

σk(x)2 ≤
cq,2

k
1
q−

1
2
.

Finally, it can be shown that the i-th biggest entry of x decays as i−1/q [37].
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3.2. Block- and Group-Sparse Vectors
While the model of sparse and compressible vectors has many interesting and
justified applications, many times real-world signals will exhibit even more
structure beyond simple sparsity. One of the most common generalizations
of sparse vectors are so-called block-sparse or more generally group-sparse
signals. In the former case, we assume that the set [d] is partitioned into
L disjoint subsets Bl ⊂ [d] of possibly different sizes |Bl| = bl such that⋃L
l=1Bl = [d], and

∑L
l=1 bl = d. If the sets Bl are allowed to overlap, we refer

to them as groups instead. As in the case of sparse vectors, a vector x is called
k-block-sparse or k-group-sparse if its nonzero coefficients are limited to at
most k nonzero blocks or groups, respectively. This type of structured sparsity
arises in a variety of domains in engineering and biology. Some prominent
example applications are audio [1] and image signal processing [99], multi-
band reconstruction and spectrum sensing [69, 79], as well as sparse subspace
clustering [49]. Further applications in which block- and group-sparse signal
structures commonly appear are in the context of measuring gene expression
levels [76], and protein mass spectroscopy [92]. For a more thorough treatment
of block-sparse signal modeling, we also refer readers to [48, Chapter 2].

In the following, we limit our discussion to the case of block-sparsity. A
natural way to express the block-sparsity of a vector mathematically is by
introducing for p, q > 0 the family of mixed (`p, `q)-(quasi)norms

‖x‖p,q =
(

L∑
l=1
‖xBl

‖qp

)1/q

where we denote by xBl
∈ Cd the subvector of x restricted to the index set

Bl. Extending the notation to include the case q = 0, we define additionally
the mixed (`p, `0)-pseudonorm

‖x‖p,0 : =
∣∣∣{‖xBl

‖p 6= 0 : l ∈ [L]
}∣∣∣

= |{xBl
6= 0 : l ∈ [L]}|

which simply counts the number of nonzero blocks of x w. r. t. {Bl}Ll=1. With
this definition, a vector is called k-block-sparse if ‖x‖p,0 ≤ k. Moreover, the
atomic set which gives rise to the set of k-block-sparse vectors can now be
defined as

Ap =
L⋃
l=1

{
a ∈ Cd : ‖aBl

‖p = 1,aBl
= 0

}
. (6)

Note that unlike in the case of sparse vectors where we defined Ã = {±ei},
the set in Equation (6) is uncountable. To calculate the atomic norm, recall
the definition

‖x‖Ap
= inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0
}
.



An Introduction to Compressed Sensing 15

Since span(Ap) = Cd, there exists a ca ≥ 0 and a ∈ Ap such that for every
x ∈ Cd, we may express its coefficients in block Bl as xBl

= caa. Then we have
‖xBl

‖p = ‖caa‖p = |ca| · ‖a‖p = ca where the last step simply follows from
the fact that ca ≥ 0 and a ∈ Ap. Again, we have by the triangle inequality
that the infimum in the definition of the atomic norm must be attained by a
decomposition where each block Bl is represented by exactly one atom. Hence

‖x‖Ap
=

L∑
l=1
‖xBl

‖p = ‖x‖p,1

Note that a similar argument holds for the group-sparsity case where the sets
Bl are not assumed to be disjoint [82, Lemma 2.1].

Clearly, the atomic norm induced by A is closely related to the `1-norm
as discussed in the previous section. In the edge case with L = d, and |Bl| = 1,
we have Ap = {±ei} such that we immediately arrive again at the set of
sparse vectors.

3.3. Low-Rank Matrices
A slightly different linear inverse problem which can still be conveniently
modeled by means of atomic sets is the so-called low-rank matrix recovery
problem. Consider a matrix X ∈ Cd1×d2 of rank at most r which we observe
through the linear operator

M : Cd1×d2 → Cm : X 7→ M(X) = y.
As usual, our task is to infer X from knowledge of the map M and the
measurements y by solving the atomic norm minimization problem (ANM).
In general, there are of course d1d2 unknown entries in X so that the linear
inverse problem is clearly ill-posed as long asm < d1d2. However, by exploiting
a potential low-rank structure on X, it turns out to be possible to drastically
reduce the number of observations needed to allow for faithful estimation of
low-rank matrices (cf. Table 1).

A typical example application of low-rank matrix recovery, known as
the matrix completion problem, is the task of estimating missing entries of a
matrix based on partial observations of X of the formM(X)i = Xkl for some
(k, l) ∈ [d1]× [d2]. As before, this problem is clearly hopelessly ill-posed if X is
a full-rank or close to full-rank matrix. However, in many practical situations
in the context of collaborative filtering [56], the low-rank assumption on X is
justified by the problem domain, making low-rank matrix recovery a useful
prediction tool. The matrix completion problem was famously popularized by
the so-called Netflix Prize [10], an open competition in collaborative filtering
to predict user ratings of movies based on partial knowledge of ratings about
other titles in the portfolio. The underlying assumption is that if two users
both share the same opinion about certain titles they saw, then they are likely
to share the same opinion about titles so far only seen or rated by one of
them. In other words, if we collect the user ratings of all available titles in a
database in a matrix X, then we can assume that due to overlapping interests
and opinions, the matrix will exhibit a low-rank structure. This reduction in



16 Niklas Koep Arash Behboodi Rudolf Mathar

the degrees of freedom therefore allows to accurately predict unknown user
ratings which can then be used to provide personalized recommendations on
a per-user basis.

To demonstrate how low-rank matrices can be modeled in the context
of atomic sets, consider the set of rank-1 matrices of the form

A =
{
uv∗ ∈ Cd1×d2 : ‖u‖2 = ‖v‖2 = 1

}
=
{
uv∗ ∈ Cd1×d2 : ‖uv∗‖F = 1

}
.

Clearly, a nonnegative linear combination of r elements of A forms a matrix
of at most rank r so that coner(A) generates the set of rank r matrices. To
derive the atomic norm associated with A, consider that for every X ∈ Cd1×d2

we have by the singular value decomposition of X that

X = UΣV∗

where U ∈ Cd1×d1 and V ∈ Cd2×d2 are unitary matrices, and Σ ∈ Cd1×d2 is
a matrix containing the real-valued, nonnegative singular values on its main
diagonal and zeros otherwise. Hence we have with d := min {d1, d2} ,

X =
d∑
i=1

σiuiv∗i

with uiv∗i ∈ A. Again, with Definition 3.2 this yields

‖X‖A = inf
{∑

a∈A
ca : X =

∑
a∈A

caa, ca ≥ 0
}

=
d∑
i=1

σi(X) = ‖X‖∗

where in the second step we simply identified ca with the singular values of
the decomposition after using the fact that by the triangle inequality (w. r. t.
the Frobenius norm), the infimum must be attained by a decomposition of at
most d atoms. While the singular vectors ui and vi which make up the atoms
a = uiv∗i ∈ A are not necessarily unique, each X is identified by a unique set
of singular values.

The norm ‖·‖∗ is generally known as the nuclear norm, and acts as an
analogue of the `1-norm in the case of sparse vectors since ‖X‖∗ corresponds
to the `1-norm of the vector of singular values of X. Considering that efficient
algorithms for the singular value decomposition exist, the atomic norm mini-
mization for low-rank matrices constitutes a tractable convex optimization
problem.

Representability of Atomic Norms. While the examples of atomic sets we
presented so far all admitted relatively straightforward representations of their
associated atomic norms, efficient computation of ‖·‖A for arbitrary atomic
sets A is by no means guaranteed. A classic example of where the atomic
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norm framework fails to yield an efficient way to recover elements of a simple
set generated by conek(A) is the set

A =
{

zz> : z ∈ {±1}d
}
.

Similar to the set of low-rank matrices, the simple set generated by A con-
sists of low-rank matrices but with its elements restricted to the set ±1—a
model which appears for instance in the context of collaborative filtering [89].
Considering that conv(A) corresponds to the so-called cut polytope which
does not admit a tractable characterization, there exists no efficient way of
computing ‖·‖A. In this case, one may turn to a particular approximation
scheme of conv(A) known as theta bodies [58] which are closely related to the
theory of sum-of-squares (SOS) polynomials. We refer interested readers to
[31, Section 4].

As another example, consider the atomic set

A =
{
af,ϕ ∈ Cd : f ∈ [0, 1], ϕ ∈ [0, 2π)

}
with

af,ϕ := ei2πϕ


1

ei2πf

...
ei2πf(d−1)

.
This set represents a continuous alphabet of atoms which gives rise to the
signal set of sampled representations of continuous-time superpositions of
complex exponentials [14]. Using results from the theory of SOS polynomials,
Bhaskar, Tang and Recht showed in [14] that the associated atomic norm can
be computed as the solution of the program

minimize
x,u,t

trT (u)
2d + t

2
s.t.

(
T (u)x
x∗ t

)
≥ 0

where the linear operator T : Cd → Cd×d maps a vector u to the Toeplitz
matrix generated by u. The same representation also appears in the context
of compressed sensing off the grid where one aims to recover a sampled
representation of a superposition of complex exponentials from randomly
observed time-domain samples [91].

Both of these examples illustrate that while the atomic norm framework
represents a convenient modeling tool for low-complexity signal sets, it may
turn out to be a nontrivial or in some cases simply impossible task to actually
find efficient ways to compute the atomic norm.
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4. Recovery of Individual Vectors
In this section, we address the recovery of individual signals in simple sets
K generated by conek(A). For simplicity, we limit our discussion to the case
where the atomic set A contains only real elements so that K ⊂ Rd.

4.1. Exact Recovery
We begin our discussion by motivating why atomic norm minimization as
stated in Problem (ANM) is a suitable strategy for the recovery of simple
signals from linear measurements. To that end, consider again the equality-
constrained minimization problem

minimize ‖x‖A
s.t. Ax̊ = Ax. (7)

By rewriting the equality constraint in terms of d = x̊− x ∈ ker(A), we may
restate the problem as

minimize
d∈ker(A)

‖d + x̊‖A.

Of course, the above problem is not of any practical interest as it requires
knowledge of the true solution x̊. However, it immediately follows from this
representation that Problem (7) has a unique solution if the null space of A
does not contain any non-trivial directions which reduce the atomic norm
anchored at x̊. More precisely, by introducing the set

DA(̊x) :=
{
d ∈ Rd : ‖d + x̊‖A ≤ ‖x̊‖A

}
= {z− x̊ : ‖z‖A ≤ ‖x̊‖A}

of descent directions of ‖·‖A at x̊, we obtain the condition

DA(̊x) ∩ ker(A) = {0} (8)

which, if satisfied, guarantees perfect recovery of x̊ via Problem (7).
Alternatively, one may argue as follows. Let x̊ ∈ conek(A) and define

the set X = ‖x̊‖A conv(A) which clearly contains x̊. Given access to linear
measurements of the form y = Ax̊, one may then attempt to solve the
feasibility problem

find x ∈ X
s.t. y = Ax (9)

to recover x̊. This program has a unique solution if X intersects the affine
subspace Ex̊ :=

{
z ∈ Rd : Az = Ax̊

}
only at the solution x̊, i.e.,

X ∩ Ex̊ = {x̊}
⇔ (X − x̊) ∩ (Ex̊ − x̊) = {0}
⇔ (X − x̊) ∩ ker(A) = {0}. (10)

Assuming that conv(A) contains an open ball around the origin, X is a closed
star domain7. In this case, we may use a well-known result from functional

7A set K is a star domain if tK ⊆ K ∀t ∈ [0, 1].
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analysis that allows us to express X in terms of the 1-sublevel set of its
Minkowski functional [85]

γX (x) = inf {t > 0 : x ∈ t‖x̊‖A conv(A)}

= 1
‖x̊‖A

inf {t > 0 : x ∈ t conv(A)} =
‖x‖A
‖x̊‖A

.

Thus we have that

X − x̊ =
{
x ∈ Rd : γX (x) ≤ 1

}
− x̊

= {x− x̊ : ‖x‖A ≤ ‖x̊‖A}
= DA(̊x),

yielding again the uniqueness condition stated in Equation (8).
If ‖·‖A defines a proper norm on Rd, then the set of descent directions

is a convex body. In that case, we may replace DA(̊x) in Equation (8) by its
conic hull without changing the statement. This set, denoted by

TA(̊x) = coneDA(̊x),

is usually referred to as the tangent or descent cone of ‖·‖A at x̊, and represents
a central object in the study of convex analysis. This ultimately leads to the
following result.

Proposition 4.1 ([15, Proposition 2.1]). The vector x̊ is the unique solution
of Problem (ANM) if and only if

TA(̊x) ∩ ker(A) = {0}. (11)

As a typical example application of Proposition 4.1, consider the atomic
set A = {±ei} ⊂ Rd of signed unit vectors. The convex hull of this set is the
`1-unit ball in Rd, and hence ‖·‖A = ‖·‖1; the conic hull is all of Rd. However, if
we restrict attention to nonnegative linear combinations of at most k elements
in A, we obtain the set K = conek(A) =

{
x ∈ Rd : |supp(x)| ≤ k

}
= Σk(Rd)

of k-sparse vectors. As illustrated in Figure 2a, the 1-sparse vector x̊ can be
uniquely recovered via `1-minimization since its tangent cone TA(̊x) intersects
the null space of A only at {0}. On the other hand, if x̊ is as depicted in
Figure 2b, then the tangent cone of A at x̊ corresponds to a rotated halfspace.
Since every 1-dimensional subspace of R2 clearly intersects this halfspace at
arbitrarily many points, the only way a vector on a 2-dimensional face of
‖x̊‖1B2

1 can be recovered is if ker(A) is the 0-dimensional subspace {0}, i.e.,
if A has full rank. Finally, note that the vector x̊′ in Figure 2a cannot be
recovered either despite sharing the same sparsity structure as x̊. Conceptually,
this is immediately obvious from the fact that ‖x̊‖1 <

∥∥x̊′∥∥1 which implies
that even if we were to observe x̊′, atomic norm minimization would still yield
the solution x? = x̊. In light of Proposition 4.1, this is explained by the fact
that the tangent cone at x̊′ has the same shape as TA(̊x) but rotated 90◦
clockwise so that TA(̊x′) and ker(A) share a ray, violating the uniqueness
condition (11). This example demonstrates the non-uniform character of the
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recovery condition of Proposition 4.1 which locally depends on the particular
choice of x̊.

Ex̊ = x̊ + ker(A)

ker(A)

TA(̊x)

‖x̊‖1B
2
1

x̊

x̊′

(a) Recovery of 1-sparse vectors

Ex̊

ker(A)

‖x̊‖1B
2
1

TA(̊x)

x̊

(b) Recovery of a 2-sparse vector

Figure 2. Recovery of vectors in R2

Since the tangent cone is a bigger set than DA(̊x), the condition
TA(̊x) ∩ ker(A) = {0}

in a sense represents a stronger requirement than DA(̊x)∩ker(A) from before.
Moreover, while Proposition 4.1 provides a necessary and sufficient condition
for the successful recovery of individual vectors via Problem (ANM), testing
the condition in practice ultimately requires prior knowledge of the solution
x̊ which we aim to recover. However, as we will see shortly, both issues can
be elegantly circumvented by turning to the probabilistic setting where we
assume the elements of the measurement matrix are drawn independently
from the standard Gaussian distribution. This will allow us to draw on a
powerful result from asymptotic convex geometry to assess the success of
recovering individual vectors probabilistically. Before stating this result, we
first need to introduce the concept of Gaussian mean width or mean width for
short, an important summary parameter of a bounded set.

Definition 4.1 (Gaussian mean width). The Gaussian mean width of a bounded
set Ω is defined as

w(Ω) = E sup
x∈Ω
〈g,x〉 (12)

where g ∼ N(0, I) is an isotropic zero-mean Gaussian random vector.

The Gaussian mean width is closely related to the spherical mean width
wS(Ω) = E sup

x∈Ω
〈η,x〉

where η is a random d-vector drawn uniformly from the Haar measure on the
sphere. Since length and direction of a Gaussian random vector are independent
by rotation invariance of the Gaussian distribution, we can decompose every
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standard Gaussian vector g as g = ‖g‖2η where η is again drawn from the
uniform Haar measure. The Gaussian and spherical mean width are therefore
related by

w(Ω) = E‖g‖2wS(Ω) ≤
√
dwS(Ω)

where the last step follows from Jensen’s inequality. Intuitively, the mean
width of a bounded set measures its average diameter over all directions
chosen uniformly at random. Consider for a moment the mean width w(Ω−Ω)
of the Minkowski difference of Ω with itself. Then we immediately have

w(Ω− Ω) = E sup
d∈Ω−Ω

〈g,d〉

= E sup
x,z∈Ω

〈g,x− z〉

≤ 2E sup
x∈Ω
〈g,x〉 = 2w(Ω)

with equality if Ω is origin-symmetric. Given a realization of the random
vector g, the term supx,z∈Ω〈g,x− z〉 then corresponds to the distance of two
supporting hyperplanes to Ω with normal g, scaled by ‖g‖2.

With the definition of the mean width in place, we are now ready to
state the following result known as Gordon’s escape through a mesh or simply
Gordon’s escape theorem. We present here a version of the theorem adopted
from [31, Corollary 3.3]. The original result was first presented in [57].

Theorem 4.1 (Gordon’s escape through a mesh). Let S ⊂ Sd−1, and let E be
a random (d−m)-dimensional subspace of Rd drawn uniformly from the Haar
measure on the Grassmann manifold G(d, d−m). Then

P(S ∩ E = ∅) ≥ 1− exp
(
−1

2

[
m√
m+ 1

− w(S)
]2
)

provided

m ≥ w(S)2 + 1.

In words, Gordon’s escape through a mesh phenomenon asserts that a
randomly drawn subspace misses a subset of the Euclidean unit sphere with
overwhelmingly high probability if the codimension m of the subspace is on
the order of w(S)2. Moreover, the probability of this event only depends on
the codimension m of the subspace, as well as on the Gaussian width of the
sphere patch S. In order to apply this result to the situation of Proposition 4.1
in the context of the standard Gaussian measurement ensemble, we merely
need to restrict the tangent cone TA(̊x) to the sphere, i.e., S = TA(̊x) ∩ Sd−1,
and choose E = ker(A). This immediately yields the following straightforward
specialization of Theorem 4.1.

Corollary 4.1 (Exact recovery from Gaussian observations). Let A ∈ Rm×d
be a matrix populated with independent standard Gaussian entries, and let
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x̊ ∈ conek(A). Then x̊ can be perfectly recovered from its measurements
y = Ax̊ via atomic norm minimization with probability at least 1− η if

m ≥
(
w(TA(̊x) ∩ Sd−1) +

√
2 log(η−1)

)2
.

So far, we have only concerned ourselves with establishing conditions
under which an arbitrary vector could be uniquely recovered from its linear
measurements by solving Problem (7). In fact, nothing in our discussion so
far precludes that this undertaking might require us to take at least as many
measurements as the linear algebraic dimension of the vector space containing
x̊. The power of the presented approach lies in the fact that for many signal
models of interest such as sparse vectors, group-sparse vectors, and low-rank
matrices, the tangent cone at points x̊ lying on low-dimensional faces of a
scaled version of conv(A) are narrow (cf. Figure 2), and therefore exhibit
small mean widths. Coming back to the canonical example of sparse vectors
as discussed before, it can be shown that w(TA(̊x) ∩ Sd−1) roughly scales
like

√
k log(d/k) for any x̊ ∈ Σk(Rd) (see, for instance, [86, 31]). In light of

Corollary 4.1, this requires m to scale linearly in k, and only logarithmically
in the ambient dimension d. For convenience, we list some of the best known
bounds for the mean widths of tangent cones associated with the signal models
introduced in Section 3 in Table 1 [55].

Signal set Induced norm Upper bound on w(TA (̊x) ∩ Sd−1)2

Sparse vectors in Rd ‖·‖1 2k log(d/k) + 3k/2
Block-sparse vectors in Rd

with L blocks of size d/L ‖·‖2,1 4k log(L/k) + (1 + 6d/L)k/2

Rank r matrices in Rd1×d2 ‖·‖∗ 3r(d1 + d2 − r)

Table 1. Mean width estimates for tangent cones

Without going into too much detail, we want to briefly comment on a
few natural extensions of Corollary 4.1.

Extensions to Noisy Recovery and Subgaussian Observations. An obvious
question to ask at this point is what kind of recovery performance we might
expect if we extend our sensing model to include additive noise of the form
y = Ax̊ + w with ‖w‖2 ≤ σ as a more realistic model of observation.
Naturally, we cannot hope to ever recover x̊ exactly in that case unless σ = 0.
Nevertheless, one should still expect to be able to control the recovery quality
in terms of the mean width of the tangent cone and the noise level σ by
an appropriate choice of m. The following result, which was adapted from
[31, Corollary 3.3], demonstrates that this is in fact the case if we solve the
noise-constrained atomic norm minimization problem

minimize ‖x‖A
s.t. ‖y−Ax‖2 ≤ σ.

(13)
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Proposition 4.2 (Robust recovery from Gaussian observations). Let A and
x̊ be as in Corollary 4.1. Assume we observe y = Ax̊ + w with ‖w‖2 ≤ σ.
Then with probability at least 1− η, the solution x? of Problem (13) satisfies

‖x̊− x?‖2 ≤ ν
provided

m ≥

(
w(TA(̊x) ∩ Sd−1) +

√
2 log(η−1)

1− 2σ/ν

)2

.

In closing, we also want to mention a recent extension of Gordon’s
escape theorem to measurement matrices whose rows are independent copies
of subgaussian isotropic random vectors ai ∈ Rd with subgaussian parameter
τ , i.e.,

E(aia>i ) = I, ‖ai‖ψ2
:= sup

θ∈Sd−1
‖〈θ,ai〉‖ψ2

≤ τ. (14)

Based on a concentration result for such matrices acting on bounded subsets
of Rd [65, Corollary 1.5], Liaw et al. proved a general version of the following
result which we state here in the context of signal recovery in the same vein
as Corollary 4.1.
Theorem 4.2 (Exact recovery from subgaussian observations). Let A ∈ Rm×d
be a matrix whose rows are independent subgaussian random vectors satisfying
Equation (14), and let x̊ ∈ conek(A). Then with probability at least 1− η, x̊
is the unique minimizer of Problem (7) with y = Ax̊ if

m & τ4
(
w(TA(̊x) ∩ Sd−1) +

√
log(η−1)

)2
.

Surprisingly, this bound suggests almost the same scaling behavior
as in the Gaussian case (cf. Corollary 4.1), barring the dependence on the
subgaussian parameter τ , as well as an absolute constant hidden in the
notation.

The results mentioned so far are not without their own set of drawbacks.
While robustness against noise was established in Proposition 4.2, the tangent
cone characterization is inherently susceptible to model deficiencies. For
instance, consider again the example A = {±ei} giving rise to the set of
Σk(Rd). If x̊ is not a sparse linear combination of elements in A (e.g., x̊
may only be compressible rather than exactly sparse), then the tangent
cone of ‖·‖A at x̊ may not have a small mean width at all as we saw in
Figure 2. In fact, in this case w(TA(̊x) ∩ Sd−1)2 is usually on the order of
the ambient dimension d [78]. Moreover, as we also demonstrated graphically
in Figure 2, the recovery guarantees presented in this section only apply to
individual vectors. Such results are customarily referred to as non-uniform
guarantees in the compressed sensing literature. Before moving on to the
uniform recovery case which provides recovery conditions for all vectors in a
signal class simultaneously, we want to briefly comment on an important line
of work connecting sparse recovery with the field of conic integral geometry.
This is the subject of the next section.
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4.2. Connections to Conic Integral Geometry
In an independent line of research [4], the sparse recovery problem was recently
approached from the perspective of conic integral geometry. At the heart of
this field lies the study of the so-called intrinsic volumes of cones. We limit
our discussion to the important class of polyhedral cones8 here, and refer
interested readers to [4] for a treatment of general convex cones.

Definition 4.2 (Intrinsic volumes). Let C be a polyhedral cone in Rd, and
denote by g a standard Gaussian random vector. Then for i = 0, . . . , d, the
i-th intrinsic volume of C is defined as

vi(C) = P(ΠC(g) ∈ Fi(C))

where ΠC denotes the orthogonal projector on C, and Fi(C) denotes the union
of relative interiors of all i-dimensional faces of C.

If we are given two non-empty convex cones C,D ⊂ Rd, one of which
is not a subspace, and we draw an orthogonal matrix Q ∈ Rd×d from the
uniform Haar measure, then the probability that C and the randomly rotated
cone QD intersect nontrivially is fully determined by the intrinsic volumes of
C and D. The precise statement of this result is known as the conic kinematic
formula.

Theorem 4.3 (Conic kinematic formula, [4, Fact 2.1]). Let C and D be two
non-empty closed convex cones in Rd of which at most one is a subspace.
Denote by Q ∈ O(d) a matrix drawn uniformly from the Haar measure on the
orthogonal group. Then

P(C ∩QD 6= {0}) =
d∑
i=0

(1 + (−1)i+1)
d∑
j=1

vi(C)vd+i−j(D).

To apply this result to the context of sparse recovery as discussed in
the previous section, one simply chooses C = TA(̊x), and D = ker(A), similar
to the situation of Gordon’s escape theorem. While the intrinsic volumes of
ker(A), a (d−m)-dimensional linear subspace, are easily determined by9

vi(ker(A)) =
{

1, i = d−m,
0, otherwise,

(15)

the calculation of the intrinsic volumes of tangent cones are much less straight-
forward. Fortunately, there is an elegant way out of this situation which was
first demonstrated in [4]. Since any vector x ∈ Rd projected on a closed
convex cone C must belong to exactly one of the d+ 1 sets Fi(C) defined in
Definition 4.2, the collection {vi(C)}di=0 of intrinsic volumes therefore defines

8A cone C ⊂ Rd is called polyhedral if it can be expressed as the intersection of finitely
many halfspaces.
9This follows from the fact that ker(A) only has a single face on which Πker(A) projects
every point x ∈ Rd, namely ker(A) itself.
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a discrete probability distribution on {0, 1, . . . , d}. Moreover, the distribution
can be shown to concentrate sharply around its expectation

δ(C) :=
d∑
i=0

ivi(C),

known as the statistical dimension of C, which in turn can be tightly estimated
in many cases of interest by appealing to techniques from convex analysis. In
fact, the same technique was previously used in [31] to derive tight estimates
of the mean width of various tangent cones. Note, however, that this work
merely exploited a numerical relation between the Gaussian mean width
and the statistical dimension which we will comment on below but was not
generally motivated by conic integral geometry. The concentration behavior of
intrinsic volumes ultimately allowed Amelunxen et al. to derive the following
remarkable pair of bounds which constitute a breakthrough result in the
theory of sparse recovery.

Theorem 4.4 (Approximate conic kinematic formula, [4, Theorem II]). Let
x̊ ∈ conek(A), and denote by A ∈ Rm×d a standard Gaussian matrix with
independent entries as usual. Given the linear observations y = Ax̊, and de-
noting by x? the optimal solution of Problem (7), the following two statements
hold for η ∈ (0, 1]:

P(x? = x̊) ≥ 1− η if m ≥ δ(TA(̊x)) + cη
√
d,

P(x? 6= x̊) ≤ η if m ≤ δ(TA(̊x))− cη
√
d

with cη =
√

8 log(4/η).

Before addressing the problem of estimating the statistical dimension δ
of the tangent cone TA(̊x), let us briefly comment on the above result first.
Theorem 4.4 is remarkable for a variety of reasons. First, as was demonstrated
numerically in [4], the two bounds correctly predict the position of the so-called
phase transition. Such results were previously only known in the asymptotic
large-system limit (cf. [46, 43]) where one considers for d,m, k → ∞ the
fixed ratios δ := m/d, and ρ := k/m over the open unit square (0, 1)2. The
phase-transition phenomenon describes a particular behavior of the system
which exhibits a certain critical line ρ? = ρ?(δ) that partitions (0, 1)2 into
two distinct regions: one where recovery almost certainly succeeds, and one
where it almost certainly fails. The transition line then corresponds to the
50-th percentile. Secondly, it represents the first non-asymptotic result which
correctly predicts a fundamental limit below which sparse recovery will fail
with high probability. This is in stark contrast to previous results based on
Gordon’s escape theorem which were only able to predict that recovery would
succeed above a certain threshold but could not make any assessment of
the behavior below it. Finally, as a result of the second point, Theorem 4.4
represents the first result which quantifies the width of the transition region
where the probability of exact recovery will change from almost certain failure
to almost certain success. Once again we refer interested readers to the
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excellent exposition [4], particularly 10, for a thorough comparison of their
results to the pertinent literature on the existence of phase transitions in
compressed sensing.

The key ingredient in the application of Theorem 4.4 is the statistical
dimension δ of the tangent cone TA(̊x). As mentioned above, the statistical
dimension is defined as the expected value of the distribution defined by the
intrinsic volumes of TA(̊x). However, it admits two alternative representations
which can be leveraged to estimate δ(C), especially when C corresponds to a
tangent cone. This is the content of the following result.

Proposition 4.3 (Statistical dimension, [4, Proposition 3.1]). Let C be a closed
convex cone in Rd, and let g be a standard Gaussian d-vector. Then

δ(C) =
d∑
i=0

ivi(C) = E
[
‖ΠC(g)‖22

]
= E

[
dist(g, C◦)2]

where C◦ =
{
z ∈ Rd : 〈x, z〉 ≤ 0 ∀x ∈ C

}
denotes the polar cone of C.

In particular, we want to focus on the last identity when C = TA(̊x). In
fact, in this situation one may exploit a well-known fact from convex geometry
that states that the polar cone of the tangent cone corresponds to the normal
cone [85]

NA(̊x) =
{
v ∈ Rd : 〈v,x− x̊〉 ≤ 0 ∀x : ‖x‖A ≤ ‖x̊‖A

}
=
{
v ∈ Rd : 〈v,d〉 ≤ 0 ∀d ∈ TA(̊x)

}
which in turn can be expressed as the conic hull of the subdifferential of the
atomic norm at x̊,

TA(̊x)◦ = NA(̊x) = cone(∂‖x̊‖A) =
⋃
t≥0

t∂‖x̊‖A.

The last identity follows from the fact that the subdifferential of a convex
function is always a convex set. In other words, given a recipe for the subdiffer-
ential of the atomic norm, the statistical dimension of its associated tangent
cone can be estimated by bounding the expected distance of a Gaussian
vector to its convex hull. In many cases of interest, this turns out to be a
comparatively easy task (see, e.g., [31, Appendix C], [55, Appendix A] and [4,
Section 4]).

As alluded to before, the statistical dimension also shares a close con-
nection to the Gaussian mean width. In particular, we have the following two
inequalities (cf. [4, Proposition 10.2])

w(C ∩ Sd−1)2 ≤ E
[
dist(g, C◦)2] = δ(C) ≤ w(C ∩ Sd−1)2 + 1.

This shows that estimating the mean width is qualitatively equivalent to
estimating δ. As previously mentioned, this connection was used in [31] to
derive precise bounds for the mean widths of the tangent cones for sparse
vectors, and low-rank matrices, as well as for block- and group-sparse signals
in [55] and [82], respectively. Note that the connection between mean width
and statistical dimension was already used in the pioneering works of Stojnic
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[90], as well as Oymak and Hassibi [74], even if the term statistical dimension
was originally coined in [4] where the connection between the probability dis-
tribution induced by the intrinsic volumes, and its projective characterization
in Proposition 4.3 was first established. We want to emphasize again that
the fundamental significance of the statistical dimension in the context of
sparse recovery did not become clear until the seminal work of Amelunxen,
Lotz, McCoy and Tropp who rigorously demonstrated the concentration be-
havior of intrinsic volumes, culminating in the breakthrough result stated
in Theorem 4.4. In the same context, the authors argued that the statistical
dimension generally represents a more appropriate measure of “dimension”
of cones than the mean width. For instance, if C is an n-dimensional lin-
ear subspace Ln of Rd, then it immediately follows from Equation (15) that
δ(Ln) = dim(Ln) = n. Moreover, given a closed convex cone C ⊂ Rd, we
have δ(C) + δ(C◦) = d (cf. [4, Proposition 3.1]) which generalizes the property
dim(Ln)+dim(L⊥n ) = d from linear subspaces to convex cones since L◦n = L⊥n ,
i.e., the polar cone of a subspace is its orthogonal complement.

The concepts discussed in this section all addressed the problem of
recovering or estimating individual vectors with a low-complexity structure
from low-dimensional linear measurements. In other words, given two vectors
x̊ and x̊′ with the same low-complexity structure, and the knowledge that x̊
can be estimated with a particular accuracy, we are not able to infer that the
same accuracy also holds when we try to recover x̊′ given a fixed choice of A.
Recall, for example, the situation illustrated in Figure 2a. If instead of x̊ we
observe a vector x̊′ positioned on the rightmost vertex of the scaled `1-ball,
the tangent cone at x̊′ now corresponds to the tangent cone at x̊ rotated
90◦ clockwise around the origin. However, since this cone intersects the null
space of A at arbitrarily many points, we are not able to recover x̊ and x̊′
simultaneously. In the parlance of probability theory, we might say that the
results presented in this section are conditioned on a particular choice of x̊.
Such results are therefore known as non-uniform guarantees as they do not
hold uniformly for all signals in a particular class at once.

In contrast, in the next section we will introduce a variety of properties
of measurement matrices which will allow us to characterize the recovery
behavior uniformly over all elements in a signal class given the same choice
of measurement matrix. Most importantly, we will focus on a particularly
important property which not only yields a sufficient condition for perfect
recovery of sparse vectors but one which has also proven an indispensable
tool in providing stability and robustness conditions in situations where we
are tasked with the recovery of signals from corrupted measurements.

5. An Appetizer: Exact Recovery of Sparse Vectors
In this section, we consider conditions under which the sparse linear inverse
problem, in which we are to infer a d-dimensional vector x̊ ∈ Σk from its
linear measurements y = Ax̊ ∈ Rm, admits a unique solution. To that end,
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consider two vectors x, z ∈ Σk, and suppose that both vectors are mapped to
the same point y = Ax = Az such that x− z ∈ ker(A). Obviously, unless we
specifically ask that x 6= z, there is absolutely no chance that we would ever
be able to decide which element in Σk generated the measurements y. In other
words, if there is to be any hope to ever uniquely identify sparse vectors from
their image under A, the most fundamental condition we must impose is that
no two vectors in Σk are mapped to the same point y in Rm. However, since
the difference of two k-sparse vectors is 2k-sparse, this immediately yields the
condition ker(A)∩Σ2k = {0}. In words, the linear inverse problem for sparse
vectors is well-posed if and only if the only 2k-sparse vector contained in the
null space of A is the zero vector.

Note that this viewpoint differs from the way we approached the re-
covery problem earlier in Section 4 where we merely asked for a particular
optimization problem defined in terms of a fixed vector x̊ ∈ K to have a
unique solution which ultimately lead us to the local tangent cone condition in
Proposition 4.1. This also explains why in the example depicted in Figure 2a,
we were able to recover the 1-sparse vector x̊ ∈ R2 but not the 1-sparse vector
x̊′. As the considerations above show, there simply is no circumstance under
which we would ever be able to uniquely recover every 1-sparse vector in R2

from scalar measurements y ∈ R. This is due to the fact that the null space of
any matrix A ∈ R1×2 (a row vector) either corresponds to a line through the
origin or the entire plane R2 itself if A = 0. However, since the set of 2-sparse
vectors in R2 also corresponds to R2, the subspace ker(A) intersects Σ2 at
arbitrarily many points regardless of the choice of A, violating the condition
ker(A) ∩ Σ2 = {0}.

The following theorem, which constitutes a key result in compressed
sensing, formalizes the observations above.

Theorem 5.1 ([54, Theorem 2.13]). Given a matrix A ∈ Cm×d, the following
statements are equivalent:

a) Given a vector x̊ ∈ Cd supported on a set of size at most k, the problem
minimize ‖x‖0

s.t. Ax̊ = Ax (P0)

has a unique k-sparse minimizer, namely x? = x̊.
b) Every vector x̊ is the unique k-sparse solution of the system Az = Ax̊.
c) The only 2k-sparse vector contained in the null space of A is the zero

vector, i.e., ker(A) ∩ Σ2k = {0}.

The key insight of the above result is the equivalence between the
condition ker(A) ∩ Σ2k = {0}, and the existence of sparse minimizers of a
particularly important nonconvex optimization problem. More precisely, we
have by Theorem 5.1a) that a natural strategy to recover a sparse vector
x̊ ∈ Σk given y and A corresponds to a search for the sparsest element in the
affine space

{
x ∈ Cd : Ax = y

}
.

One immediate question arising from Theorem 5.1 is “how underdeter-
mined” the system y = Ax̊ is allowed to become for there to still be a unique
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solution. Remarkably, Problem (P0) can be shown to uniquely recover the
original vector x̊ as soon as the rank of the measurement matrix A ∈ Cm×d
exceeds the critical threshold rank A ≥ 2k [54]. In other words, every 2k
columns of A must be linearly independent. Motivated by this observation,
some authors refer to the so-called spark of a matrix—a neologism formed
as a mixture of the words “sparse” and “rank”—as the smallest number of
linearly dependent columns of A [41]. With this definition, the rank constraint
can be equivalently stated as spark(A) > 2k. Given a measurement matrix A
of size m× d in the regime m < d, perfect recovery of any k-sparse vector is
therefore guaranteed as soon as spark A > 2k. Moreover, since rank(A) ≤ m,
the rank requirement rank(A) ≥ 2k ultimately yields the necessary condition
m ≥ 2k for perfect recovery of all k-sparse vectors via `0-minimization.

As alluded to before, an important distinction between the rank char-
acterization above, and the tangent cone condition from Proposition 4.1 is
that the latter only applies to individual elements of Σk while the require-
ment rank(A) ≥ 2k implies perfect recovery of every k-sparse vector via
`0-minimization. If we are only interested in a non-uniform recovery condi-
tion, it turns out that we already get by with m ≥ k + 1 measurements [54,
Section 2.2]. Note, however, that the condition in Proposition 4.1 is based
on a tractable optimization problem. This stands in stark contrast to the `0-
minimization problem (P0) which is provably NP-hard as it can be reduced to
the so-called exact 3-set cover problem which in turn is known to belong to the
class of NP-complete problems [71]. As a result, solving Problem (P0) requires
a combinatorial search over all

∑d
i=0
(
d
i

)
possible subproblems if k is unknown

and
(
d
k

)
otherwise, both of which are intractable for even moderately sized

problems. While there exist certain deterministic matrices which satisfy the
rank condition such as Vandermonde matrices, as well as tractable algorithms
such as Prony’s method to solve the associated `0-minimization problem, the
solution of the general problem remains out of reach unless P = NP. Moreover,
another drawback of attempting to solve the `0-minimization problem directly
is that it can be shown to be highly sensitive to measurement noise, and
sparsity defects [54, Chapter 2].

While Theorem 5.1 in and of itself already represents a fascinating result
in the field of linear algebra, the story does not end there. Despite the seemingly
dire situation we find ourselves in when attempting to find minimizers of
Problem (P0), one of the key insights in the theory of compressed sensing
is that there is a convenient escape hatch in the form of convex relaxations.
In fact, it turns out that under slightly more demanding conditions on the
null space of A, we are still able to faithfully recover sparse or approximately
sparse vectors by turning to a particular relaxation of Problem (P0). We are,
of course, talking about the infamous `1-minimization problem which we
already discussed implicitly in the context of atomic norm minimization w. r. t.
the atomic set A = {±ei} generating the set of sparse vectors. It is this insight
which elevates the field of compressed sensing from a purely mathematical
theory to a highly desirable tool with far-reaching implications in countless
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domains of engineering, physics, chemistry and biology. Before discussing
the particular conditions on A which allow for robust and most importantly
efficient recovery of sparse vectors from underdetermined linear measurements,
let us first state and briefly comment on what is by now probably one of the
most well-known and well-studied optimization problems in mathematics to
date.

In light of our discussion of compressible vectors in Section 3.1, the
following optimization problem, famously known as the basis pursuit (BP)
problem, naturally represents the closest convex relaxation of the nonconvex
`0-minimization problem (P0):

minimize
x

‖x‖1
s.t. Ax = Ax̊.

(P1)

Ignoring for a moment any structural properties on the vector x̊ we aim to
recover, as well as the properties of the measurement matrix A ∈ Cm×d, the
program can be shown to yield m-sparse minimizers [54, Theorem 3.1]. This
observation alone already serves as a strong indicator of the deep connection
between `1-minimization, and sparse recovery. Moreover, the relaxation can
be solved in polynomial time by so-called interior point methods, a class of
algorithms which is by now considered a standard tool in the field of convex
optimization. In particular, in the real setting Problem (P1) belongs to the
class of linear programs (LPs), while in the complex case the problem can be
transformed into a second-order cone program (SOCP) over the Cartesian
product of d Lorentz cones KL :=

{
(z, t) ∈ R2 × R≥0 : ‖z‖2 ≤ t

}
.

6. Characterization of Measurement Matrices
At the beginning of Section 4, we presented a necessary and sufficient condition
for the exact recovery of vectors in simple sets from underdetermined linear
measurements (cf. Proposition 4.1). This condition is very much local in
nature as it depends on the particular choice of the vector one aims to recover.
To circumvent this issue, we turned to random matrices which allowed us
to draw on powerful probabilistic methods to bound the probability that,
conditioned on the choice of a particular vector, we would be able to recover
it via atomic norm minimization.

It turns out that in a sense, this strategy can be mirrored in the case of
uniform recovery of sparse vectors. However, rather than directly estimating
the probability that the condition in Theorem 5.1c) as established in the
previous section holds for a particular choice of random matrix, we first
introduce a few common properties of general measurement matrices, some
of which will enable us to state powerful recovery guarantees which hold
over entire signal classes rather than individual vectors. In Section 7, we will
then present a series of results which assert that for many different choices of
random measurement ensembles, such properties can be shown to be satisfied
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with overwhelmingly high probability, provided the number of measurements
is chosen appropriately.

6.1. Null Space Property
As alluded to before, the relaxation of the original `0-minimization problem
to a tractable convex program comes at the price of a critical difference to
Problem (P0). While the only requirement for Problem (P0) to recover the
original vector x̊ ∈ Σk was for the number of measurements to exceed 2k,
perfect recovery will now be dependent on a certain structural property of
the null space of A, aptly referred to as the null space property (NSP), which
was first introduced in [33].

Definition 6.1 (Null space property). A matrix A ∈ Cm×d is said to satisfy
the NSP of order k if, for any set S ⊂ [d] with |S| ≤ k, we have

‖vS‖1 <
∥∥vS∥∥1 ∀v ∈ ker A \ {0}.

The definition of the null space property admits a few additional obser-
vations for vectors in the null space of A. Consider again an index set S ⊂ [d]
of size at most k. Then for v ∈ ker A \ {0} we have

‖v‖1 =
∥∥vS + vS

∥∥
1 = ‖vS‖1 +

∥∥vS∥∥1

<
∥∥vS∥∥1 +

∥∥vS∥∥1

= 2
∥∥vS∥∥1.

Moreover, if S is the set supporting the largest components of v in absolute
value, one has with the definition of the best k-term approximation error in
Equation (4),

‖v‖1 < 2σk(v)1.

Finally, by the Cauchy-Schwarz inequality we have that for any v ∈ Cd, it
holds that ‖v‖21 ≤ ‖v‖0 · ‖v‖

2
2. Therefore, one often alternatively finds the

condition

‖vS‖2 <
1√
k

∥∥vS∥∥1

in the definition of the null space property.
Given a matrix that satisfies the null space property, we can now state

the general result for the recovery of any k-sparse vector x̊ ∈ Cd from its
linear measurements by solving the basis pursuit problem (BP) below. In
particular, consider a vector v ∈ ker A ∩ Σk supported on an index set
S ⊂ [d] of size 2k, and assume further that v 6= 0. Then for two disjoint
set S1, S2 with S = S1 ∪ S2 and |S1| = |S2| = k, by the null space property
we have ‖vS1‖1 < ‖vS2‖1 and ‖vS2‖1 < ‖vS1‖1, which is a contradiction. In
other words, the null space property implies that the null space of A only
contains a single 2k-sparse vector: the zero vector. This implies the condition
we previously stated in Theorem 5.1c) which said that `0-minimization can
recover any k-sparse vector as long as the null space of the measurement
matrix contains no 2k-sparse vectors save for the zero vector. Amazingly,
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the null space property provides a necessary and sufficient condition for the
following recovery guarantee for sparse vectors.

Theorem 6.1. Let A ∈ Cm×d and k ∈ [d]. Then every k-sparse vector x̊ is
the unique minimizer of the basis pursuit problem

minimize ‖x‖1
s.t. y = Ax (BP)

with y = Ax̊ iff A satisfies the null space property of order k.

Proof. If Ax̊ = Az, then dx̊ − z ∈ ker(A) with dS = x̊ − zS and dS = zS .
Invoking the null space property we have

‖x̊‖1 = ‖x̊− zS + zS‖1
≤ ‖dS‖1 + ‖zS‖1
<
∥∥dS∥∥1 + ‖zS‖1

=
∥∥zS∥∥1 + ‖zS‖1 = ‖z‖1.

This means that x̊ is the unique minimizer of (BP). For the other direction,
every v ∈ ker(A) satisfies AvS = A(−vS). Since vS is the unique minimizer
of (BP), we have ‖vS‖1 < ‖ − vS‖1 which is the null space property. �

Two situations are of particular importance in linear inverse problems,
namely situations in which x̊ is only approximately sparse, and when the
measurements are corrupted by additive noise. It is therefore generally de-
sirable for a recovery algorithm to be both robust to noise and stable w. r. t.
to so-called sparsity defect. To that end, one can extend the definition of
the null space property to provide similar guarantees to the one stated in
Theorem 6.1. We first consider the so-called stable null space property which
can be used to account for sparsity defects of vectors.

Definition 6.2 (Stable null space property). A matrix A ∈ Cm×d is said to
satisfy the stable null space property of order k with constant 0 < ρ < 1 w. r. t.
any set S ⊂ [d] if

‖vS‖1 ≤ ρ
∥∥vS∥∥1 ∀v ∈ ker A

with |S| ≤ k.

With this definition in place, the following result characterizes the impact
of sparsity defects on the recovery error of the basis pursuit problem.

Theorem 6.2 ([54, Theorem 4.12]). Let A ∈ Cm×d and k ∈ [d]. Then with
y = Ax̊, the solution x? of Problem (BP) satisfies

‖x? − x̊‖2 ≤
2(1 + ρ)
(1− ρ) σk (̊x)1

if A satisfies the stable null space property of order k. In particular, if x̊ ∈ Σk
then x? = x̊.
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We can extend the definition of the stable null space property once
more to also account for additive noise in the measurements. For reference,
we state here the most general form of the so-called `q-robust null space
property. However, instead of using this definition to state a stable, noise-
robust counterpart to Theorem 6.2, we will instead turn to a more commonly
used property of measurement matrices in the next section to state a guarantee
of this type.

Definition 6.3 (`q-robust null space property). Let q ≥ 1, and denote by ‖·‖
an arbitrary norm on Cm. Then the matrix A ∈ Cm×d satisfies the `q-robust
null space property of order k with constants 0 < ρ < 1 and τ > 0 if for all
v ∈ Cd,

‖vS‖q ≤
ρ

k1−1/q

∥∥vS∥∥1 + τ‖Av‖

for all S ⊂ [d], |S| ≤ k.

Theorem 6.1 yields a necessary and sufficient condition for the matrix A
that answers the central question when minimizers of (P0) and (P1) coincide.
While this represents an invaluable result, Theorem 6.1 makes no statement
regarding the actual existence of such matrices. As it turns out, constructing
deterministic matrices which directly satisfy the null space property (or its
stable or noise-robust variants) constitutes a highly nontrivial problem. In
fact, even verifying whether a given matrix satisfies the null space property
was eventually shown to be an NP-hard decision problem [94]. Fortunately,
it can be shown that matrices satisfying the null space property still exist
in abundance if one turns to random measurement ensembles. While it is
possible to directly establish the existence of such matrices probabilistically10,
it has become common practice in the compressed sensing literature to mainly
consider an alternative property of measurement matrices to establish recovery
guarantees. The property in question is of course the infamous restricted
isometry property (RIP) which was introduced in one of the very first papers
on compressed sensing [20], and by now constitutes one of the most well-studied
objects in the theory.

6.2. Restricted Isometry Property
The restricted isometry property (RIP) was first introduced in the seminal
work by Candès, Romberg and Tao [20], and shown in [22] to allow for robust
recovery of approximately sparse vectors in the presence of measurement noise.
While this property only yields a sufficient condition implying the null space
property, matrices of this type can be found—at least in a probabilistic sense—
in abundance as various random measurement ensembles can be shown to
satisfy the RIP with high probability (cf. Section 7). The property is defined
as follows.

10In fact, as we will briefly discuss in Section 7, such random constructions are often
characterized by more well-behaved scaling constants.
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Definition 6.4. A matrix A ∈ Cm×d is said to satisfy the RIP of order k if
(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22

for all x ∈ Σk with δ ≥ 0. The smallest δk ≤ δ satisfying this condition is
called the restricted isometry constant (RIC) of A.

Intuitively, this definition states that for any S ⊂ [d] with |S| ≤ k
the submatrix AS obtained by retaining only the columns indexed by S
approximately acts like an isometry on the set of k-sparse vectors which
admits an alternative characterization of the restricted isometry constant δk
as

δk = max
S⊂[d],
|S|=k

‖A∗SAS − I‖2→2.

This definition of the restricted isometry constant is commonly used in proofs
establishing the restricted isometry property in a probabilistic setting by
showing that δk concentrates sharply around its expectation.

In light of the importance and popularity of the restricted isometry
property in compressed sensing, we will state most recovery conditions of
the various algorithms introduced in Section 8 exclusively in terms of the
restricted isometry constants associated with the RIP matrices in question.

The restricted isometry property admits a particularly short and concise
proof of why k-sparse vectors have unique measurement vectors y under
projections through A. Assume the matrix A ∈ Cm×d satisfies the RIP
condition of order 2k with constant δ2k < 1, and consider two distinct k-
sparse vectors x, z ∈ Cd with Ax = Az. Define now vx − z ∈ Σ2k, i.e.,
Av = 0. Then we have by the restricted isometry property,

0 < (1− δ2k)‖v‖22 ≤ ‖Av‖22 = 0.
Since this only holds for v = 0, we must have x = z. In other words, if A is
an RIP matrix of order 2k, no two k-sparse vectors are mapped to the same
measurement vector y through A.

In the following, we consider noisy measurements of the form y = Ax̊+e
where the additive noise term e ∈ Cm is assumed to be bounded according
to ‖e‖2 ≤ η. Under assumption of the restricted isometry property, one may
then establish the following stable and robust recovery result.
Theorem 6.3 ([54, Theorem 6.12]). Let A ∈ Cm×d be a matrix satisfying
the RIP of order 2k with restricted isometry constant δ2k < 4/

√
41. For

x̊ ∈ Cd, and y = Ax̊ + e with ‖e‖2 ≤ η, denote by x? the solution of the
quadratically-constrained basis pursuit problem

minimize ‖x‖1
s.t. ‖Ax− y‖2 ≤ η.

(QCBP)

Then
‖x̊− x?‖1 ≤ Cσk (̊x)1 +D

√
kη,

‖x̊− x?‖2 ≤
C√
k
σk (̊x)1 +Dη,
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where C,D > 0 depend only on δ2k.

This result is both stable w. r. t. sparsity defect, and robust against
additive noise as the error bounds only depend on the model mismatch
quantified by the best k-term approximation error of x̊, as well as on the
extrinsic noise level η. In case of exact k-sparsity of x̊, and in the absence of
measurement noise, Theorem 6.3 immediately implies perfect recovery.

6.3. Mutual Coherence
Despite the fact that both NSP and RIP allow for the derivation of very strong
results in terms of stability and robustness of general recovery algorithms,
checking either of them in practice remains an NP-hard decision problem
[94]. One alternative property of a measurement matrix A that can easily be
checked in practice is the so-called mutual coherence.

Definition 6.5. Let A ∈ Cm×d. Then the mutual coherence µ = µ(A) is
defined as

µ(A) max
1≤i6=j≤d

|〈ai,aj〉|
‖ai‖2‖aj‖2

where ai denotes the i-th column of A. Assuming `2-normalized columns of
A, this corresponds to the largest off-diagonal element in absolute value of
the Gramian A∗A of A.

The following proposition presents a fundamental limit on the mutual
coherence of a matrix known as the Welch bound.

Proposition 6.1 ([98]). The coherence of a matrix A ∈ Cm×d with `2-normalized
columns satisfies

µ(A) ≥

√
d−m
m(d− 1) .

The equality is attained for every matrix whose columns form an equiangular
tight frame.

Unfortunately, coherence-based analyses are rather pessimistic in terms
of the number of measurements required to establish robust and stable recovery
guarantees. In fact, it can be shown that conditions for perfect recovery in
terms of the mutual coherence dictate a quadratic scaling m = k2 of the
number of measurements [95], which is only of interest in practice at low
sparsity levels.

6.4. Quotient Property
One drawback of the quadratically-constrained basis pursuit problem (QCBP)
is the fact that one has to have access to an estimate of the noise parameter
η ≥ ‖e‖2, which is often not available in practice. Surprisingly, it can be shown,
however, that under an additional condition on the measurement matrix stable
and robust recovery of compressible vectors is still possible without any prior
knowledge of ‖e‖2 ∈ Cm by means of solving the equality-constrained basis
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pursuit problem. This condition is given in the form of the so-called quotient
property of A.

Definition 6.6. A matrix A ∈ Cm×d is said to satisfy the `1-quotient property
if for any e ∈ Cm there exists a vector u ∈ Cd such that

e = Au with ‖u‖1 ≤ ν
√
k∗‖e‖2

where k∗m/ log(ed/m).

If a matrix satisfies both the robust null space property, and the quotient
property, this allows one to establish the following remarkable result.

Theorem 6.4 ([54, Theorem 11.12]). Let A ∈ Cm×d be a matrix satisfying the
`2-robust null space property as in Definition 6.3, as well as the `1-quotient
property as in Definition 6.6. Let further x̊ ∈ Cd, e ∈ Cm, and denote by
y = Ax̊ + e the noisy linear measurements of x̊. Then the solution x? of the
basis pursuit problem (BP) satisfies for k ≤ ck∗,

‖x̊− x?‖2 ≤
C1√
k
σk (̊x)1 + C2‖e‖

where ‖·‖ denotes the norm assumed in the `2-robust null space property. The
constants C1 and C2 only depend on ρ, τ, c, and ν, i.e., the parameters of the
null space and quotient property, respectively.

In the next section, we will address the construction of random mea-
surement matrices which, with high probability, satisfy either the restricted
isometry property and/or null space property, respectively. Note that similar
probabilistic results can also be shown to hold for the quotient property as
introduced above. However, we skip the discussion of this topic for brevity,
and refer interested readers to [54, Section 11.3] instead.

7. Probabilistic Constructions of Measurement Matrices
In this section, we present a series of results which establish the existence
of suitable measurement matrices for compressed sensing in the sense that
they satisfy the restricted isometry property and consequently the null space
property with high probability.

7.1. Restricted Isometries
The first remarkable result we look at in this section concerns the class
of subgaussian ensembles which encompasses many important instances of
random measurement matrices such as Gaussian and Bernoulli matrices, as
well as any matrix populated with independent copies of bounded random
variables.

Theorem 7.1 (Subgaussian restricted isometries, [50, Theorem C.1]). Let the
rows of the m×d matrix A be distributed according to an independent isotropic
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subgaussian distribution. Then the matrix 1√
m

A satisfies the restricted isome-
try property of order k with constant δk ≤ δ if

m ≥ Cδ−2k log
(
ed

k

)
with probability at least 1−2 exp(−δ2m/C) where the constant C only depends
on the subgaussian norm of the rows of A.

A similar theorem can be stated for the case where the columns instead of
rows of A follow a subgaussian distribution. Due to the isotropy assumption of
the distribution, the random matrix 1/

√
mA acts as an isometry in expectation

as we would expect from an RIP matrix, i.e., E‖1/
√
mAx‖22 = ‖x‖22. The

exponential decay of the failure probability in the above theorem therefore
indicates that ‖1/

√
mAx‖22 concentrates sharply around its mean ‖x‖22 as

intended for A to behave similarly to an isometry.
The original proof of the restricted isometry property for Gaussian

random matrices goes back to the work of Candès and Tao [20, 21]. As
hinted at above, the restricted isometry property is usually established by
means of concentration inequalities that control the deviation of 1/

√
mA

from its mean. In particular, such concentration results are usually based on
Bernstein’s inequality for subexponential random variables. In the case of
Gaussian random matrices, one can appeal to slightly simpler methods that
characterize the smallest and largest singular values of the Gaussian random
matrices to establish the RIP in that way.

Another possible proof strategy is based on a result due to Gordon which
bounds the expected minimum and maximum gain of a Gaussian random
matrix acting on subsets of the sphere ([57, Corollary 1.2]). This result also
lies at the heart of the proof of Gordon’s escape theorem. Combined with
Gaussian concentration of measure, and a simple bound on the mean width
of the set of sparse vectors restricted to the unit sphere (see, for instance,
[77, Lemma 2.3]), these arguments admit a simple concentration bound which
implies the restricted isometry property.

Yet another proof of the restricted isometry property for Gaussian
matrices is based on the famous Johnson-Lindenstrauss (JL) lemma [62] (see
also [36]). Given a finite collection of points P = {x1, . . . ,xN} ⊂ Rd, and a
random matrix A ∈ Rm×d populated with independent zero-mean Gaussian
random variables with standard deviation 1/

√
m, the JL lemma establishes a

bound on the probability that the pairwise distances between the projected
points AP and P deviate at most by a factor of ±ε. A matrix A that satisfies
the property

(1− ε)‖x− y‖2 ≤ ‖Ax−Ay‖2 ≤ (1 + ε)‖x− y‖2 ∀x,y ∈ P

is therefore called a Johnson-Lindenstrauss embedding of P . Note that while
this property looks very similar to the definition of the restricted isometry
property, it only holds for finite point sets. The JL lemma now asserts that the
dimension m of the space has to be at least m & log(N) for the above property
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to hold with high probability. In [7], this result was used in combination with
a covering argument for the set of sparse vectors to provide an alternative
RIP proof.

The statement of Theorem 7.1 depends on a yet unspecified constant C
that effects the number of measurements required for a matrix to be an RIP
matrix. For Gaussian matrices, the constant can be explicitly characterized
(see [54, Chapter 9]). For example, in the asymptotic regime when d/k →∞,
the RIP constant δ2k ≤ 0.6129 can be achieved with probability at least 1− ε
if

m ≥ 54.868
(
k log

(
ed

2k

)
+ 1

2 log(2ε−1)
)
. (16)

Finally, it can be shown using tight bounds on the Gelfand widths of `1-balls
that this bound on m is in fact optimal up to a constant [Foucart2010, 66].

7.1.1. Bounded Orthonormal Systems. The random matrices discussed so
far did not possess any discernible structure. However, in many domains
of engineering this assumption would be quite restrictive as the type of
measurement matrix is often in part dictated by the specific application,
be it due to the particular structure of the problem or for computational
purposes. A typical example are structured random matrices involving the
DFT or the Hadamard transform. In such situations, we may aim to exploit
the existence of highly efficient numerical implementations such as fast Fourier
transform (FFT) routines which might prevent us from incorporating a mixing
stage involving random matrices into the acquisition system. Moreover, if
fast implementations of the measurement operator are available, we can often
exploit the operator in the decoding stage to drastically improve the efficiency
of the employed recovery procedure. A canonical example of where structured
random matrices emerge is when a band-limited function is to be constructed
from random time-domain samples. In this case, we consider functions of the
form

f(t) =
d∑
i=1

xiϕi(t), (17)

where t ∈ D ⊂ R and the collection {ϕi}i of functions from D to C forms a
bounded orthonormal systems (BOS) according to the following definition11.

Definition 7.1 (Bounded orthonormal systems). A collection of complex-
valued functions {ϕi}di=1 defined on a set D ⊂ R equipped with a probability
measure µ is called a bounded orthonormal systems with constant K if∫

D
ϕi(t)ϕj(t)dµ(t) = δi,j

and
‖ϕi‖∞ = sup

t∈D
|ϕi(t)| ≤ K ∀i ∈ [d].

11The definition can easily be extended to the case where D ⊂ Rn, but we restrict our
discussion to the scalar case here.
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Let f be a function with a basis expansion as in Equation (17) w. r. t. a
bounded orthonormal systems defined by the collection {ϕi}i. If we sample f
at m points t1, . . . , tm ∈ D, we obtain the system of equations

f(tj) =: yj =
d∑
i=1

xiϕi(tj), j ∈ [m].

Collecting the samples {ϕi(tj)}j of the i-th basis function in a vector ϕi =
(ϕi(t1), . . . , ϕi(tm))> forming a column of the matrix A = [ϕ1, . . . ,ϕd] of size
m× d, we immediately obtain the familiar form

y = Ax,

where y = (y1, . . . , ym)> and x = (x1, . . . , xd)>. As usual, we assume that x
is sparse or compressible. In this case, the same recovery guarantees w. r. t.
to the equality- or quadratically-constrained basis pursuit problem can be
established as soon as A or a scaled version of A can be shown to satisfy the
restricted isometry property as before.

The reason why we endow D with a probability measure is of course that
it allows us to draw the sampling points tj from µ at random to establish the
restricted isometry property of matrices defined w. r. t. subsampled bounded
orthonormal systemss probabilistically. Such results were first demonstrated
in [21] for the case of the partial random Fourier matrix which satisfies
the restricted isometry property with high probability provided we record
Ω(k log6(d)) measurements. A non-uniform version of this result, which re-
duced the power of the log-term from 6 to 4, was shortly after proven by
Rudelson & Vershynin in [87]. Another improvement was recently presented
in [61] where the required number of measurements was further reduced to
Ω(k log2(k) log(d)) for randomly subsampled Fourier matrices. Under certain
conditions, this bound can further be reduced. For instance, if the dimension
d is an integer multiple of the sparsity level k, Bandeira et al. managed to
remove the second log-factor in the previous bound, proving that Ω(k log(d))
measurements suffice to establish the restricted isometry property for partial
Fourier matrices [6]. In case the measurement matrix corresponds to a sub-
sampled Hadamard matrix, Bourgain demonstrated in [18] the sufficiency of
Ω(k log(k) log2(d)) measurements to establish the restricted isometry prop-
erty. A similar bound had previously been shown to hold by Nelson et al.
in [72]. The best general bound to date asserts that m = Ω(k log3(k) log(d))
measurements are required to establish the restricted isometry property for
arbitrary subsampled bounded orthonormal systemss where the sampling
points are drawn from a discrete measure [32, Theorem 4.6]. This includes all
measurement matrices formed by randomly selecting rows of a unitary matrix
such as the DCT or DFT matrix, a Hadamard matrix, etc.

The following theorem records a modern general version of the RIP
characterization for measurement matrices based on randomly subsampled
bounded orthonormal systemss.
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Theorem 7.2 (BOS-RIP, [84, Theorem 4]). Consider a set of complex-valued
bounded orthonormal basis functions {ϕj}dj=1 defined on a measure space
D ⊂ R equipped with the probability measure µ. Define a matrix A ∈ Cm×d
with entries

aij = ϕj(ti), i ∈ [m], j ∈ [d],

constructed by independently drawing the sampling points ti from the measure
µ. Then with probability at least 1− d−c log3(k), the matrix 1√

m
A is an RIP

matrix of order k with constant δk ≤ δ provided

m ≥ Cδ−2K2k log3(k) log(d).

The positive constants C and c are universal.

For the existing bounds, the number of necessary measurements m scales
with K2. For the bound on m in Theorem 7.2 to be meaningful, the constant
K should therefore either be independent of the dimension d or at least only
scale with lower powers of d.

Finally, let us highlight that results as stated above can be extended
to even more restrictive structured random matrices [83, 5]. For instance,
the authors of [50] applied a novel technique to bound the suprema of chaos
processes to obtain conditions under which random partial circulant matrices
would satisfy the RIP. In this situation, the measurement procedure is of the
form

Ax = 1√
m

RΩ(ε ∗ x),

where RΩ : Cd → Cm denotes the operator restricting the entries of a
vector to the set Ω ⊂ [d] of cardinality m, ε is a Rademacher vector of
length d, and ∗ denotes the circular convolution operator. In general, if
m ≥ Cδ−2k log2(k) log2(d), then with probability at least 1− d− log(d) log2(k)

the partial random circulant matrix A satisfies the RIP of order k with
constant δk ≤ δ.

7.2. Random Matrices and the Null Space Property
While probabilistic constructions of RIP matrices have been established for
a variety of random ensembles such as subgaussian distributions, as well as
measurement matrices defined by randomly subsampled basis functions of
bounded orthonormal systemss as discussed in the previous section, there are
some shortcomings to RIP-based recovery guarantees. For instance, the leading
constants involved in the required scaling for Gaussian matrices to satisfy the
RIP are often quite large. While these constants are usually due to artifacts
of the proof strategy, analyses which establish stable and robust recovery by
directly appealing to the null space property for Gaussian matrices often have
much nicer constants. For instance, for large d and d/k with moderately large k,
establishing the null space property requires m ≥ 8k log(ed/k) measurements
(cf. [54, Theorem 9.29]) which is much smaller than the constant involved in
Equation (16).
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Another shortcoming in RIP-based analyses becomes evident when one
tries to obtain recovery guarantees of the form

‖x̊− x?‖q ≤ Ck,pσk (̊x)1 +Dk‖e‖p
where we aim to characterize the reconstruction performance in the presence of
`p-bounded measurement noise for cases other than (p, q) ∈ {1, 2}2. Note that
we still measure the sparsity mismatch in terms of best k-term approximation
error w. r. t. the `1-norm12. Such guarantees based on restricted isometries
require a generalization of the restricted isometry property as stated in
Definition 6.4. In particular, if one is interested in the recovery of a vector
x̊ ∈ Cd from compressive measurements of the form y = Ax̊+e with ‖e‖p ≤ ε,
we may solve the program

minimize ‖x‖1
s.t. ‖Ax− y‖p ≤ ε.

In order to characterize the reconstruction quality of a minimizer x? of this
program, one may turn to the mixed (`p, `q)-RIP of the form

c‖x‖q ≤ ‖Ax‖p ≤ C‖x‖q ∀x ∈ Σk.

However, as was recently addressed in [39], the best known probability bounds
to establish the existence of such matrices for p 6= 1, 2 exhibit significantly
worse scaling in the number of required measurements than k log(d/k). In
their work, Dirksen et al. therefore derive concentration results which instead
establish the `q-robust null space property (Definition 6.3), providing near-
optimal scaling behavior of m (up to possible log-factors) [39] for more general
heavy-tailed random matrices. In other words, they demonstrate that recovery
guarantees as outlined above, which require similar scaling compared to the
provably optimal regime in the case of the (`2, `2)-RIP, are not in general
outside the realm of possibility. However, their work demonstrates that one
may have to move away from RIP-type conditions, and consider stronger
concepts such as the null space property and its generalizations to establish
similar guarantees. Note that to the best of our knowledge, there currently do
not exist any results which establish probabilistic bounds that directly assert
the null space property of subsampled BOS matrices without first establishing
the RIP to imply the null space property.

Finally, we want to point out two examples of measurement ensembles
which provably require more than k log(d/k) measurements to satisfy the RIP
but which nevertheless allow for typical recovery guarantees from k log(d/k)
measurements. The first example are random matrices whose rows follow
an isotropic log-concave distribution. Such matrices satisfy the canonical
restricted isometry property, i.e., the (`2, `2)-RIP, only if m & k log2(ed/k)
but provably allow for exact recovery as soon as m & k log(ed/k) [3, 63, 2].
The second example concerns a certain combinatorial construction of sensing

12This avoids another issue regarding the so-called instance optimality of pairs (A,∆)
where ∆: Cm → Cd denotes an arbitrary reconstruction algorithm (see [54, Chapter 11] for
details).
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matrices based on the adjacency matrix of random left k-regular bipartite
graphs with d left and m right vertices [13]. The corresponding graph is
called a lossless expander and its normalized adjacency matrix 1

sA can be
shown to provide typical recovery guarantees with probability at least 1− η if
s & log(ed/(kη)) and m & k log(ed/(kη)). However, the matrix 1

sA does not
satisfy the (`2, `2)-RIP even though it satisfies the (`1, `1)-RIP.

8. An Algorithmic Primer
In the remainder of this introduction to compressed sensing we want to turn
our attention to the practical aspects of signal recovery. To that end, we
decided to include a whirlwind tour of recovery algorithms that go beyond the
scope of the quadratically-constrained basis pursuit problem. Note, however,
that the selection of algorithms chosen for this survey is not even close to
exhaustive, and really only scratches the surface of what the literature holds
in store. An informal search on the IEEE Xplore database produces upwards
of 1600 search results for the query “compressed sensing recovery algorithm”.
Naturally, there is no doubt that this list includes a huge volume of work
on specialized algorithms which go beyond the simple sparsity case that
we will discuss in this section, as well as survey papers and works which
simply benchmark the performance of existing algorithms in the context of
specific problems. Nevertheless, this informal experiment still demonstrates
the incredibly lively research activity in the field of recovery algorithms in
compressed sensing and related domains. For that reason, we limit attention
to only a handful of some of the most popular methods found in the pertinent
literature, and leave it up to the reader to inform him or herself beyond the
methods surveyed in this section.

In general, there are multiple criteria by which authors have historically
grouped different recovery algorithms for compressed sensing. The most
generic classification usually considers three (mostly) distinct classes: convex
optimization-based formulations13, so-called greedy methods, and iterative
thresholding algorithms. Another possible classification could be based on the
amount of prior knowledge required to run a particular algorithm. The most
coarse classification in this regard takes the form of algorithms which require
an explicit estimate of the sparsity level, and those which do not. As is the
case for most other surveys on CS recovery algorithms, we decided to opt for
the former here.

Before moving on to more efficient recovery methods (at least from a run
time and computational complexity perspective), we first state some of the
most common variants of convex problems one predominantly finds presented
in the relevant literature.

13We are careful not to call this an algorithm class as optimization programs are technically
just descriptions of problems which still require specialized algorithms such as interior-point
methods to actually solve them.
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8.1. Convex Programming
As usual, we model the measurement process of a perfectly sparse or com-
pressible signal x̊ ∈ Cd via the affine model y = Ax̊ + e where e ∈ Cm is a
norm-constrained noise term, i.e., ‖e‖p ≤ η with η ≥ 0 and p ≥ 1. If an upper
bound, say w. r. t. the `2-norm, of this error term e is known, we naturally
consider the quadratically-constrained basis pursuit problem that we already
discussed in Section 6.2:

minimize ‖x‖1
s.t. ‖y−Ax‖2 ≤ η.

(QCBP)

For η = 0, this immediately reduces to the original basis pursuit problem.
Even though we already characterized the recovery behavior of this prob-

lem when we introduced the restricted isometry property, we state the result
here again for completeness. If x̊ ∈ Cd is merely approximately sparse, one ob-
tains the following characterization for minimizers x? of Problem (QCBP): if
A ∈ Cm×d satisfies the restricted isometry property of order 2k with constant
δ2k < 4/

√
41, one has [54, Theorem 6.12]

‖x? − x̊‖2 ≤ C1k
−1/2σk (̊x)1 + C2η (18)

where C1, C2 > 0 only depend on δ2k. Clearly, this result implies perfect
recovery in the case where we measure strictly k-sparse vectors in a noise-free
environment.

For completeness, we also want to briefly highlight a few alternative
convex programming formulations closely related to Problem (QCBP). A very
common variant of the quadratically-constrained basis pursuit program is the
following unconstrained problem

minimize ‖x‖1 + λ‖Ax− y‖2 (BPDN)

with λ > 0, often referred to as basis pursuit denoising (BPDN). The BPDN
problem is particularly interesting in situations where no sensible estimate for
the noise level η is available. In this case, one may instead use the parameter
λ to control the trade-off between sparsity and data fidelity. Depending on
the type of method used to solve this unconstrained problem, it might be
helpful to replace the data penalty term ‖Ax− y‖2 with its squared version
to remove the differentiability issue. Of course, the nondifferentiability of
the objective function of Problem (BPDN) remains unchanged by this step.
However, if one employs a splitting-type algorithm where one alternates
between optimizing over individual parts of the objective function, considering
a squared `2-penalty enables us to use gradient-based techniques to deal
with the smooth part of the problem. We will discuss an example of such an
approach in Section 8.2.2 where we present a well-known iterative algorithm
to solve a particular variation of Problem (BPDN).

Another important formulation is the so-called least-absolute shrinkage
selection operator (LASSO) which was originally proposed in the context of
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sparse model selection in statistics:

minimize ‖Ax− y‖2
s.t. ‖x‖1 ≤ σ.

(LASSO)

Since the `1-norm generally functions as a sparsity prior, this formulation
might be of interest in situations where rather than an estimate of the noise
level η we might have access to a suitable estimate of the sparsity level.
Recall that for x̊ ∈ Σk we have by the Cauchy-Schwarz inequality that
‖x̊‖1 ≤

√
k‖x̊‖2. Depending on the application of interest, an upper bound

on the energy of the original signal x̊ might be naturally available so that one
may simply choose σ =

√
k‖x̊‖2.

Finally, the following program is known as the Dantzig selector :

minimize ‖x‖1
s.t. ‖A∗(Ax− y)‖∞ ≤ τ.

(DS)

The key idea here is to impose a maximum tolerance on the worst-case
correlation between the residual r = Ax− y and the columns {ai}di=1 of A.
In the extreme case τ = 0, the Dantzig selector reduces to the classic basis
pursuit problem since ker(A∗) = {0}, and thus ‖A∗(Ax− y)‖∞ = 0 if and
only if x belongs to the affine space

{
z ∈ Cd : Az = y

}
.

Conveniently, despite their different formulations and use-cases, the
problems (BPDN), (LASSO) and (DS) all share the same recovery guarantee
from Equation (18) up to nonlinear transformation of the parameters η, λ
and σ [54, Proposition 3.2]. While the Dantzig selector is the odd one out,
similar guarantees can still be derived with relative ease. We refer interested
readers to [29].

8.2. Thresholding Algorithms
While the recovery guarantees in the relevant literature are usually strongest
for convex optimization-based recovery procedures, generic solving algorithms
based on interior point methods [19, Chapter 11] as employed by popular
optimization toolboxes like cvx [59] or cvxpy [38], as well as implementations
more specialized to the particular nature of `1-minimization problems such as
`1-magic [28], spgl1 [12], and YALL1 [102], become less and less practical
if problem sizes increase. The class of thresholding algorithms represents
an attractive compromise between strong theoretical guarantees and highly
efficient and predictable running times.

Thresholding algorithms can generally be further subdivided into so-
called hard and soft thresholding algorithms. In the following, we present
the most popular representatives from each class, namely iterative hard
thresholding (IHT) and hard thresholding pursuit (HTP) for the former, and
the iterative soft thresholding algorithm (ISTA) and the fast iterative soft
thresholding algorithm (FISTA) for the latter. Other popular thresholding-
based algorithms include subspace pursuit [35], NESTA [9], SpaRSA [100],
and SPGL1 [11].
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8.2.1. Hard Thresholding. At the heart of any hard thresholding algorithm
lies the so-called hard thresholding operator Hk : Cd → Σk defined as

Hk(x) = argmin
z∈Σk

‖x− z‖p

for p ≥ 1 which projects an arbitrary d-vector on the set of k-sparse vectors.
The value Hk(x) is constructed by identifying the index set G ⊂ [d] of size
|G| = k which supports the largest values of x (in absolute value), and zeroing
out any values supported on G. In other words, the vector Hk(x) achieves
the best k-term approximation error σk(x)p for any p ≥ 1. For convenience,
we also define the set-valued operator Lk : Cd → 2[d] with Lk = supp ◦Hk

yielding the support set of the best k-term approximation of x ∈ Cd. Here,
2G denotes the power set of G.

With these definitions in place, we now turn to the first hard thresholding
algorithm.

Iterative Hard Thresholding. The key idea of iterative hard thresholding
is to reduce the smooth loss function g(x) = 1/2‖Ax− y‖22 with gradient
∇g(x) = A∗(Ax−y) at every iteration by means of a gradient descent update
before pruning the solution to the set of k-sparse vectors by means of the hard
thresholding operator. The full listing of the algorithm is given in Algorithm 1.

Algorithm 1 Iterative Hard Thresholding (IHT)

Input: A ∈ Cm×d, y ∈ Cm, k ∈ [d]
Initialize: x0 ← 0, n← 0
do

vn+1 ← xn −A∗(Axn − y) . Gradient descent step
xn+1 ← Hk(vn+1) . “Projection” on Σk
n← n+ 1

while halting condition is not satisfied
Output: xn

Considering the nonlinearity of the operator Hk, it is not immediately
obvious that Algorithm 1 even converges, let alone to the true solution x̊. The
following result demonstrates both robustness w. r. t. sparsity defect, as well
as stability w. r. t. measurement noise. Consider an arbitrary vector x̊ ∈ Cd
which we measure according to the model y = Ax̊ + e. If A satisfies the RIP
condition with constant δ6k < 1/

√
3, Algorithm 1 produces iterates (xn)n≥0

satisfying [54, Theorem 6.21]

‖xn − x̊‖2 ≤ 2ρn‖x̊‖2 + C1k
−1/2σk (̊x)1 + C2‖e‖2

where C1, C2 > 0 and 0 < ρ < 1 are constants which only depend on δ6k. For
n→∞, this sequence converges to a cluster point x? satisfying

‖x? − x̊‖2 ≤ C1k
−1/2σk (̊x)1 + C2‖e‖2. (19)
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If the vector x̊ we wish to recover is in reality supported on an index set
S ⊂ [d] of size k, and measurements are not disturbed by noise (e = 0), one
has σk (̊x)1 = 0, and therefore ‖x? − x̊‖2 ≤ 0, implying perfect recovery with
x? = x̊.

Hard Thresholding Pursuit. The fundamental difference between IHT and
HTP is the fact that HTP merely uses hard thresholded gradient descent
updates to estimate the support set of x̊. In particular, it propagates least-
squares solutions of y = Ax w. r. t. to a submatrix of A obtained by pursuing
the active support set of coefficients in each iteration based on the operator
Lk = supp ◦Hk. A full algorithm listing is given in Algorithm 2. Surprisingly,

Algorithm 2 Hard Thresholding Pursuit (HTP)

Input: A ∈ Cm×d, y ∈ Cm, k ∈ [d]
Initialize: x0 ← 0, n← 0
do

vn+1 ← xn −A∗(Axn − y) . Gradient descent step
Gn+1 ← Lk(vn+1) . Support identification
xn+1 ← 0
xn+1
Gn+1

← A†Gn+1
y . Least-squares update

n← n+ 1
while halting condition is not satisfied

Output: xn

the stability and robustness analyses are identical for IHT and HTP barring
a change of parameters (C1, C2, ρ) for HTP. Most importantly, this change
results in a faster rate of convergence for the HTP algorithm [54].

8.2.2. Soft Thresholding. While the algorithms described in Section 8.2.1 rely
on explicit hard thresholding to guarantee a certain sparsity level of solutions,
soft thresholding methods (also referred to as shrinkage thresholding for
reasons which will become clear shortly) promote sparsity by incorporating
an `1-prior in their objective functions, and applying the so-called proximal
gradient algorithm or a variant thereof. In particular, we aim to solve the
unconstrained regularized problem

minimize λ‖x‖1 + 1
2‖Ax− y‖22, (20)

with λ > 0. Up to rescaling of the objective function, and squaring of the
`2-penalty, this is identical to Problem (BPDN) introduced earlier.

To explain the general idea behind soft thresholding, consider a loss
function of the form f(x) = g(x) + h(x) where g : Rd ∪ {−∞,∞} → R is
a (possibly) nonsmooth lower semi-continuous extended value function and
h : Rd → R is a smooth convex function. If g were smooth, this problem could
be solved by standard optimization tools such as (conjugate) gradient descent
or Newton’s method. However, in order to promote sparsity one will often
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choose g = λ‖·‖1, meaning that such a simple approach is not applicable. In
the proximal gradient method, one therefore replaces the smooth part h of
f by means of a second-order approximation, i.e., one considers an iterative
approach of the form

x+ = argmin
v∈Rd

{
g(v) + ĥt(x,v)

}
where x and x+ denote the current and next iterate, respectively, and

ĥt(x,v) = h(x) + 〈∇h(x),v− x〉+ 1
2t‖v− x‖22 (21)

with t > 0 is a second-order approximation of h around the point x. It is
easily verified that the expression for x+ can be rewritten as

x+ = argmin
v∈Rd

{
g(v) + h(x) + 〈∇h(x),v− x〉+ 1

2t‖v− x‖22
}

= argmin
v∈Rd

{
g(v) + 1

2t‖v− (x− t∇h(x))‖22
}
. (22)

While this formulation might give the impression that we merely traded one
difficult optimization problem for another, it turns out that the operator in
Equation (22) corresponds to the so-called proximal operator [75]

proxtg(x) := argmin
v∈Rd

{
g(v) + 1

2t‖v− x‖22
}
,

applied to the gradient descent update x−t∇h(x). Conveniently, this operator
has a closed-form solution for a variety of different nonsmooth functions g. In
particular, it is easy to check via subdifferential calculus over its individual
entries that proxα‖·‖1

(x) = Sα(x) where

Sα(x) =
{

sgn(x)(|x| − α), |x| ≥ α,
0, otherwise,

is the so-called shrinkage operator that is applied element-wise to x14. Overall,
we obtain the iteration

x+ = Sλt(x− tA>(Ax− y)) (23)

if we apply this method to the basis pursuit denoising Problem (20). In this
particular formulation, the parameter t acts as a step-size which we may
choose (e.g.) via backtracking line-search, while λ > 0 can be used to control
the trade-off between sparsity of the solution x? and the data fidelity term
‖Ax? − y‖2.

This algorithm requires on the order of O(1/ε) iterations to come within
an ε-range |f (̊x) − f(xn)| ≤ ε of optimality, implying a convergence rate
of O(1/n) [8]. According to a celebrated result by Nesterov [73], the best

14Hence the name shrinkage thresholding.
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achievable convergence rate in the class of nonsmooth first-order methods15 is
O
(
1/n2). This rate is achievable by Nesterov’s acceleration method, resulting

in the well-known fast iterative soft thresholding algorithm (FISTA) due to
Beck & Teboulle when applied to the iterative soft thresholding algorithm [8].
Informally, the key idea of FISTA is to add a momentum term depending on
the last two iterates to avoid erratic changes in the search direction, i.e., one
updates the iterates according to

vn+1 = xn + n− 2
n+ 1(xn − xn−1),

xn+1 = Stn(vn+1 − tnA>(Axn − y))

with tn > 0 the step-size at iteration n. Note that this formulation, taken
from [75], differs from the original one given in [8] which explicitly depends on
the Lipschitz constant of the gradient of the smooth part of (20). Also note
that while this algorithm obtains the desired convergence rate of O

(
1/n2), it

is not a descent method. In practice, this means that additional book keeping
is required to keep track of the best current iterate. However, considering that
this accelerated scheme virtually comes at the same computational cost as
Equation (23), the impact of book keeping is negligible if weighed against the
greatly improved convergence behavior.

Both ISTA and FISTA solve the unconstrained problem (20), and prov-
ably converge to the global optimum at a linear and super-linear rate, respec-
tively, where convergence without step-size adaptation is determined by the
Lipschitz constant L = ‖A>A‖2→2 of the gradient of h(x) = 1/2‖Ax− y‖22.
Since our main objective is the recovery of sparse or more generally compress-
ible vectors from noisy measurements, we still have to answer the question
how closely these algorithms approximate the true solution x̊, and under
which conditions recovery is exact. Conveniently, these recovery guarantees
can be expressed in terms of the guarantees obtained for the quadratically-
constrained basis pursuit problem stated in Section 8.1. This holds because—
given a minimizer x?QCBP of (QCBP)—we can always find a transformation
T (x?QCBP, η) = λ of the parameter η ≥ 0 of (QCBP) and the parameter λ > 0
of the unconstrained problem (20) such that both convex problems have the
same optimal value f? [9]. Note, however, that explicitly finding the mapping
T is generally a non-trivial problem [11].

It remains to show when Problem (20) has a unique minimizer such
that the correspondence between the solutions x?QCBP and x?BPDN is one-to-
one given an appropriate choice of parameters η and λ. To that end, one
seeks conditions when minimizers of (20) are unique. While there are various
publications that address the issue of uniqueness of solutions to this problem,
e.g., [27], [93], none of them are immediately guaranteed by the RIP or

15Note that while we used a second-order approximation of h in Equation (21), we did so
by approximating the Hessian ∇2h(x) as a scaled identity matrix, thereby ignoring the
true second-order information of h.
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NSP. For instance, [101, Theorem 4.1] establishes the following condition for
minimizers of (20) to be unique:

Theorem 8.1. Let x? be a minimizer of the basis pursuit denoising problem,
and define S := supp(x?). Then x? is a unique minimizer iff

a) AS has full column-rank,
b) ∃u ∈ Rm such that A>Su = sgn(x?S) and

∥∥∥A>S y
∥∥∥
∞
< 1.

Approximate Message Passing. Due to the structural similarity to the iter-
ative soft thresholding algorithm, we briefly touch upon another popular
development in the field of iterative thresholding algorithms, namely the
so-called approximate message passing (AMP) method. Pioneered by Donoho,
Maleki & Montanari in [45], the general formulation of approximate mes-
sage passing (AMP) closely resembles the basic form of ISTA. The difference
amounts to a correction term of the residuum rn = Axn − y stemming
from the interpretation of the measurement model y = Ax̊ in terms of loopy
belief propagation in graphical models. Based on a slight reformulation of
Equation (23), approximate message passing proceeds via the iterations

xn+1 = Sµn
(A>rn + xn), (24)

rn = y−Axn + 1
δ
rn−1

〈
1, S′µn

(A>rn−1 + xn−1)
〉

(25)

where δ := m/d and S′µ(x) denotes the derivative of Sµ(x) ignoring the
nondifferentiability at |x| = µ. Despite this innocent looking correction term
in Equation (25) (also known as Onsager correction), which barely increases
the computational complexity over ISTA, the performance of this algorithm
in terms of the observed phase transition diagrams turns out to be highly
competitive with the de facto gold standard of `1-minimization and in certain
situations even manages to outperform it [44].

The key ingredient to the success of AMP is the observation that in the
large-system limit m, d→∞ with δ fixed, and Aij ∼i.i.d. N(0, 1/m), one has
A>rn + xn = x̊ + vn for the argument of Sµn in Equation (24) where vn is
an i.i.d. zero-mean Gaussian random vector whose variance σ2

n—and hence
the mean squared error (MSE) of the reconstruction—can be predicted by a
state evolution formalism.

Since its original introduction, a variety of modifications and improve-
ments have been proposed for the AMP algorithm. These include the denoising-
based AMP (D-AMP) [68] which generalizes the state evolution formalism to
general Lipschitz continuous denoisers other than the soft-thresholding func-
tion, vector AMP (V-AMP) [81] which extends AMP to more general classes
of measurement matrices, and generalized AMP (GAMP) [80] which extends
AMP to arbitrary input and output distributions and allows for dealing with
non-linearities in the measurement process. While the general versions of
most of these AMP variants require some statistical knowledge about the
parameters involved, there exist several modifications which estimate these
parameters online via expectation maximization (EM).



50 Niklas Koep Arash Behboodi Rudolf Mathar

In closing, we mention that Problem (20) can be tackled by a variety of
related methods such as alternating direction method of multipliers (ADMM),
forward-backward splitting, Douglas-Rachford splitting or homotopy methods.
We refer the interested reader to the excellent survey [51], as well as to the
notes in [54, Chapter 15].

8.3. Greedy Methods
Greedy algorithms are generally characterized by their tendency to act accord-
ing to locally optimal decision rules in hopes of eventually arriving at a global
optimal solution. In particular, they never explicitly aim at minimizing a
particular (non-)convex objective. Instead they treat the collection of columns
of the measurement matrix A as a dictionary of atoms D = {ai}di=1 and first
try to identify the atoms which likely contributed to the measurement vector
y, before estimating the associated weighting factors. Despite the fact that
algorithms of this type had been in use long before the advent of compressed
sensing, particularly in the image processing community, research into greedy
algorithms for sparse recovery experienced a resurgence ever since the rise of
compressed sensing. In this section, we will look at two of the most popular
representatives in this particular class of algorithms, namely the so-called
orthogonal matching pursuit and compressive sampling matching pursuit
methods.

Orthogonal Matching Pursuit. While technically a successor to the lesser used
matching pursuit algorithm, orthogonal matching pursuit (OMP) remains to
this day one of the most popular greedy algorithms due to the fact that it
is one of the methods with the lowest footprint in terms of computational
complexity. As can be seen from Algorithm 3, OMP updates its estimated
support set one atom at a time by identifying the atom ai that exhibits the
strongest correlation with the residuum rn = Axn − y as measured by the
inner product |〈ai, rn〉|.

Algorithm 3 Orthogonal Matching Pursuit (OMP)

Input: A ∈ Cm×d, y ∈ Cm, k ∈ [d]
Initialize: x0 ← 0, G0 ← ∅, n← 0, r0 ← −A∗y

do
jn+1 ← argminj∈[d] |(A∗rn)j | . Atom identification
Gn+1 ← Gn ∪ {jn+1} . Support extension
xn+1 ← A†Gn+1

y . Least-squares projection
rn+1 ← Axn+1 − y . Calculation of residuum
n← n+ 1

while halting condition is not satisfied
Output: xn

The atom selection step in each OMP iteration can be interpreted
as identifying the component of xn w. r. t. which the function f(xn) :=
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1/2‖Axn − y‖22 varies the most. This is due to the fact that the gradient
of f at xn reads ∇(1/2‖Axn − y‖22) = A∗(Axn − y) = A∗rn. The update
step xn → xn+1 on the other hand corresponds to a projection of y on the
subspace spanned by the columns of A indexed by the updated index set
Gn+1.

While theoretical guarantees in the noise-free and exactly sparse case
exist in abundance for OMP, robust and stable recovery guarantees are not as
well-developed as one might expect given the maturity of the theory and the
popularity of OMP in general. Oftentimes such results depend on additional
regularity conditions on the class of vectors one aims to recover.

In general, OMP does not require an estimate of the sparsity level of the
vector one aims to recover. The algorithm naturally terminates as soon as the
same atom is selected twice in subsequent iterations. Other halting conditions
include the relative change of estimates xn between iterations and tolerance
criteria of data fidelity measures w. r. t. rn. Considering that OMP updates
the support set one index at a time per iteration, OMP requires at least k
iterations to find a k-sparse candidate vector. If the sparsity level is known a
priori another natural termination condition is therefore simply given by the
number if iterations.

One of the earliest recovery guarantees for OMP was the coherence-based
condition (2k − 1)µ < 1 which allows OMP to recover any k-sparse vector
from noiseless linear measurements in k iterations [42]. In light of the Welch
bound (cf. Proposition 6.1)

µ ≥

√
d−m
m(d− 1) ,

this implies the quadratic scaling in the number of measurements announced
in Section 6.3. Currently, one of the best known sufficiency conditions for
exact k-sparse recovery in the noiseless setting in terms of the restricted
isometry property requires δk+1 < 1/

√
k + 1 [70, Theorem III.1].

In the general noise-corrupted setting with y = Ax̊ + e one obtains the
RIP-based bound [54, Theorem 6.25]∥∥x24k − x̊

∥∥
2 ≤ C1k

−1/2σk (̊x)1 + C2‖e‖2 (26)

for iterates of OMP after 24k iterations, where the constants C1, C2 > 0
only depend on the RIP constant δ26k < 1/6 of the associated measurement
matrix A. In the noiseless and exactly sparse case, Equation (26) guarantees
perfect recovery after 24k iterations. Note, however, that in this case OMP will
already reach the global optimum after k iterations since the algorithm selects
one atom per iteration, after which it will stall due to the fact that rn = 0 for
n > k. Otherwise, the solution returned by OMP after 24k iterations could
not be k-sparse.

These guarantees are a far cry from the recovery conditions one obtains
for methods such as QCBP or IHT seeing how RIP matrices of order 26k
are much harder to construct than matrices of order 2k and 3k, respectively.



52 Niklas Koep Arash Behboodi Rudolf Mathar

One possible explanation for the demanding requirement on the RIP order
of A is the fact that OMP in its presented form has no way to correct
possibly erroneous choices of atoms made in previous iterations. In a sense,
this observation can be seen as one of the main motivations of the compressive
sampling matching pursuit algorithm we will introduce in the next section.

Compressive Sampling Matching Pursuit. The compressive sampling match-
ing pursuit (CoSaMP) algorithm shares a lot of similarity both with the
OMP algorithm and the hard thresholding pursuit algorithm described in
Section 8.2. While technically also an iterative algorithm that relies on hard
thresholding, it is usually considered an instance of the class of greedy algo-
rithms. The full procedure is given in Algorithm 4. Given a current estimate

Algorithm 4 Compressive Sampling Matching Pursuit (CoSaMP)

Input: A ∈ Cm×d, y ∈ Cm, k ∈ [d]
Initialize: x0 ← 0, n← 0, r0 ← −A∗y
do

Gn+1 ← supp(xn) ∪ L2k(A∗rn) . Support overestimation
vn+1 ← 0
vn+1
Gn+1

← A†Gn+1
y . Least-squares projection

xn+1 ← Hk(vn+1) . “Projection” on Σk
rn+1 ← Axn+1 − y . Calculation of residuum
n← n+ 1

while halting condition is not satisfied
Output: xn

xn of x̊, CoSaMP proceeds by first identifying the 2k columns of A which
best correlate with the residuum rn = Axn − y at iteration n. The algorithm
then continues to solve a least-squares problem w. r. t. to column submatrix
defined by the support of xn and the 2k column indices identified in the
previous step. Since the algorithm ultimately aims to obtain strictly k-sparse
solutions, the next estimate xn+1 is finally found via hard thresholding of the
least-squares update vn+1.

Solving the least-squares problem over a column index set of size at most
3k effectively allows CoSaMP to adaptively correct previous choices of the
support set of its estimate of x̊. This is one of the main drawbacks of the
OMP algorithm, which will never remove a previously selected atom ai from
its dictionary once column i of A was identified as an element contributing
to y.

In accordance to the previous algorithms, we once again state available
stability and robustness results for CoSaMP. Consider a vector x̊ ∈ Cd which
we aim to recover from its linear measurements y = Ax̊ + e where A ∈ Cm×d
satisfies the RIP of order 8k with δ8k < 0.4782. Then the sequence (xn)n≥0
generated by Algorithm 4 satisfies [54, Theorem 6.28]

‖xn − x̊‖2 ≤ 2ρn‖x̊‖2 + C1k
−1/2σk (̊x)1 + C2‖e‖2 (27)
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where C1, C2 > 0 and 0 < ρ < 1 only depend on δ8k. Once again, Equation (27)
establishes the existence of cluster points x? satisfying

‖x? − x̊‖2 ≤ C1k
−1/2σk (̊x)1 + C2‖e‖2

which implies perfect recovery by convergence to the unique vector x̊ once
x̊ ∈ Σk and e = 0.

8.4. Iteratively Reweighted Least-Squares
Another popular method which does not quite fit into any of the categories
discussed so far is the so-called iteratively reweighted least-squares (IRLS)
algorithm. At its core, IRLS is motivated by the observation that

|x| = |x|−1|x|2

for 0 6= x ∈ C. Assuming for the moment that x̊ ∈ Σk were known, we could
rewrite the basis pursuit problem as

min
{

d∑
i=1
|xi| : y = Ax

}
= min

 ∑
i∈supp(̊x)

|̊xi|−1|xi|2 : y = Ax

. (28)

The idea now is to treat the term |̊xi|−1 as a weighting factor that we iteratively
update in an alternating fashion in between updates of the variables xi. To
that end, we define the weighting factors as a smooth approximation

wn+1
i = |x2

i + τ2
n+1|−1/2 (29)

where we require 0 < τn+1 ≤ τn so that wn+1
i → |xi|−1 as τn+1 → 0. Consid-

ering that supp(̊x) is unknown, this approximation has the added advantage
that we can let the summation on the right-hand side of Equation (28) run
through all indices in [d] as the regularization parameter τn avoids divisions
by zero. To proceed, we now define the functional

F(x,w, τ) = 1
2

[
d∑
i=1
|xi|2wi +

d∑
i=1

(τ2wi + w−1
i )
]
. (30)

This definition is motivated by the following observations. Given a fixed weight
vector w and regularizer τ , Equation (30) corresponds to Equation (28) with
|̊xi|−1 replaced by wi. Defining Dw := diag {w}, this constitutes a least-
squares minimization problem w. r. t. the induced norm ‖x‖Dw

:=
√

x∗Dwx,
i.e.,

minimize ‖x‖Dw
s.t. y = Ax,

which admits the closed-form solution

x? = D−1/2
w (AD−1/2

w )†y.
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The second observation concerns the update of the weighting vector w given
a fixed x and τ . In that case, it is easily verified for i ∈ [d] that

w?i = argmin
wi>0

F(x,w, τ) = 1√
|xi|2 + τ2

,

which corresponds to the regularization of wi in terms of xi and τ as motivated
by Equation (29). The full algorithm is listed in Algorithm 5. Note that the
update rule for τ is chosen in such a way that τn is a non-increasing sequence
in n as motivated above.

The following recovery guarantee for the IRLS algorithm is based on [54,
Theorem 15.15]. Let A ∈ Cm×d satisfy the restricted isometry property of
order 2k with δ2k < 7/(4

√
41) ≈ 0.2733, and define16 for αδ :=

√
1− δ2

2k −
δ2k/4,

ρ := δ2k
αδ

and τ :=
√

1 + δ2k
αδ

.

Then the sequence (xn)n≥0 generated by the IRLS algorithm converges to a
point x?, and

‖x̊− x?‖1 ≤
2(3 + ρ)
1− 3ρ σk (̊x)1

which implies perfect recovery via the IRLS algorithm if x̊ is k-sparse.

Algorithm 5 Iteratively Reweighted Least-Squares (IRLS)

Input: A ∈ Cm×d, y ∈ Cm, k ∈ [d]
Initialize: w0 ← 1, n← 0, τ0 ← 1
do

xn+1 ← D−1/2
wn (AD−1/2

wn )†y
τn+1 = min

{
τn, (xn)∗k+1/(2d)

}
wn+1
i =

(
|xn+1
i |2 + τ2

n+1
)−1/2 ∀i ∈ [d]

n← n+ 1
while halting condition is not satisfied

Output: xn

References
[1] S. I. Adalbjörnsson, A. Jakobsson, and M. G. Christensen. “Estimating

multiple pitches using block sparsity”. In: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. May 2013,
pp. 6220–6224. doi: 10.1109/ICASSP.2013.6638861.

16Note that this choice amounts to A satisfying the `2-robust null space property (cf.
Definition 6.3) of order k with constants ρ < 1/3 and τ > 0 [54, Theorem 6.13].

https://doi.org/10.1109/ICASSP.2013.6638861


REFERENCES 55

[2] R. Adamczak et al. “Restricted Isometry Property of Matrices with
Independent Columns and Neighborly Polytopes by Random Sampling”.
en. In: Constructive Approximation 34.1 (Aug. 2011), pp. 61–88. issn:
0176-4276, 1432-0940. doi: 10 . 1007 / s00365 - 010 - 9117 - 4. url:
https://link.springer.com/article/10.1007/s00365- 010-
9117-4 (visited on 06/01/2018).

[3] Radosław Adamczak et al. “Geometry of log-concave ensembles of ran-
dom matrices and approximate reconstruction”. In: Comptes Rendus
Mathematique 349.13 (July 2011), pp. 783–786. issn: 1631-073X. doi:
10.1016/j.crma.2011.06.025. url: http://www.sciencedirect.
com/science/article/pii/S1631073X11001865 (visited on 06/01/2018).

[4] D. Amelunxen et al. “Living on the edge: phase transitions in con-
vex programs with random data”. en. In: Information and Infer-
ence 3.3 (Sept. 2014), pp. 224–294. issn: 2049-8764, 2049-8772. doi:
10 . 1093 / imaiai / iau005. url: https : / / academic . oup . com /
imaiai/article- lookup/doi/10.1093/imaiai/iau005 (visited
on 01/12/2018).

[5] W. U. Bajwa et al. “Toeplitz-Structured Compressed Sensing Matrices”.
In: 2007 IEEE/SP 14th Workshop on Statistical Signal Processing. Aug.
2007, pp. 294–298. doi: 10.1109/SSP.2007.4301266.

[6] Afonso S. Bandeira, Megan E. Lewis, and Dustin G. Mixon. “Discrete
Uncertainty Principles and Sparse Signal Processing”. en. In: Journal
of Fourier Analysis and Applications 24.4 (Aug. 2018), pp. 935–956.
issn: 1531-5851. doi: 10.1007/s00041-017-9550-x. url: https:
//doi.org/10.1007/s00041-017-9550-x (visited on 11/05/2018).

[7] Richard Baraniuk et al. “A Simple Proof of the Restricted Isometry
Property for Random Matrices”. en. In: Constructive Approximation
28.3 (Dec. 2008), pp. 253–263. issn: 0176-4276, 1432-0940. doi: 10.
1007/s00365- 007- 9003- x. url: https://link.springer.com/
article/10.1007/s00365-007-9003-x (visited on 06/01/2018).

[8] Amir Beck and Marc Teboulle. “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems”. In: SIAM J. Imaging Sciences
2 (2009), pp. 183–202.

[9] Stephen Becker, Jérôme Bobin, and Emmanuel J. Candès. “NESTA:
A Fast and Accurate First-Order Method for Sparse Recovery”. In:
SIAM J. Imaging Sciences 4 (2011), pp. 1–39.

[10] James Bennett and Stan Lanning. “The Netflix Prize”. In: 2007.
[11] E. van den Berg and M. P. Friedlander. “Probing the Pareto frontier

for basis pursuit solutions”. In: SIAM Journal on Scientific Computing
31.2 (2008), pp. 890–912. doi: 10.1137/080714488. url: http://
link.aip.org/link/?SCE/31/890.

[12] Ewout van den Berg and Michael P Friedlander. SPGL1: A solver for
large-scale sparse reconstruction. 2007.

[13] R. Berinde et al. “Combining geometry and combinatorics: A unified
approach to sparse signal recovery”. In: 2008 46th Annual Allerton

https://doi.org/10.1007/s00365-010-9117-4
https://link.springer.com/article/10.1007/s00365-010-9117-4
https://link.springer.com/article/10.1007/s00365-010-9117-4
https://doi.org/10.1016/j.crma.2011.06.025
http://www.sciencedirect.com/science/article/pii/S1631073X11001865
http://www.sciencedirect.com/science/article/pii/S1631073X11001865
https://doi.org/10.1093/imaiai/iau005
https://academic.oup.com/imaiai/article-lookup/doi/10.1093/imaiai/iau005
https://academic.oup.com/imaiai/article-lookup/doi/10.1093/imaiai/iau005
https://doi.org/10.1109/SSP.2007.4301266
https://doi.org/10.1007/s00041-017-9550-x
https://doi.org/10.1007/s00041-017-9550-x
https://doi.org/10.1007/s00041-017-9550-x
https://doi.org/10.1007/s00365-007-9003-x
https://doi.org/10.1007/s00365-007-9003-x
https://link.springer.com/article/10.1007/s00365-007-9003-x
https://link.springer.com/article/10.1007/s00365-007-9003-x
https://doi.org/10.1137/080714488
http://link.aip.org/link/?SCE/31/890
http://link.aip.org/link/?SCE/31/890


56 REFERENCES

Conference on Communication, Control, and Computing. Sept. 2008,
pp. 798–805. doi: 10.1109/ALLERTON.2008.4797639.

[14] Badri Narayan Bhaskar and Benjamin Recht. “Atomic Norm Denoising
With Applications to Line Spectral Estimation”. In: 2011 49th An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton) (2011), pp. 261–268.

[15] Badri Narayan Bhaskar, Gongguo Tang, and Benjamin Recht. “Atomic
norm denoising with applications to line spectral estimation”. In: IEEE
Transactions on Signal Processing 61.23 (2013), pp. 5987–5999. url:
http://ieeexplore.ieee.org/abstract/document/6560426/.

[16] Holger Boche. Compressed sensing and its applications. New York, NY:
Springer Science+Business Media, 2015. isbn: 978-3-319-16041-2.

[17] Petros T. Boufounos et al. “Quantization and Compressive Sensing”. en.
In: Compressed Sensing and its Applications: MATHEON Workshop
2013. Ed. by Holger Boche et al. Applied and Numerical Harmonic
Analysis. Cham: Springer International Publishing, 2015, pp. 193–237.
isbn: 978-3-319-16042-9. doi: 10.1007/978-3-319-16042-9_7. url:
https://doi.org/10.1007/978- 3- 319- 16042- 9_7 (visited on
11/05/2018).

[18] Jean Bourgain. “An Improved Estimate in the Restricted Isometry
Problem”. In: Geometric Aspects of Functional Analysis. Ed. by Bo’az
Klartag and Emanuel Milman. Vol. 2116. Cham: Springer International
Publishing, 2014, pp. 65–70. isbn: 978-3-319-09476-2 978-3-319-09477-9.
url: http://link.springer.com/10.1007/978-3-319-09477-9_5
(visited on 06/17/2016).

[19] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[20] E. J. Candes and T. Tao. “Decoding by Linear Programming”. In: IEEE
Trans. Inf. Theor. 51.12 (Dec. 2005), pp. 4203–4215. issn: 0018-9448.
doi: 10.1109/TIT.2005.858979.

[21] E. J. Candes and T. Tao. “Near-Optimal Signal Recovery From Random
Projections: Universal Encoding Strategies?” In: IEEE Transactions on
Information Theory 52.12 (Dec. 2006), pp. 5406–5425. issn: 0018-9448.
doi: 10.1109/TIT.2006.885507.

[22] Emmanuel J. Candès. “The restricted isometry property and its implica-
tions for compressed sensing”. In: Comptes Rendus Mathematique 346.9
(May 2008), pp. 589–592. issn: 1631-073X. doi: 10.1016/j.crma.2008.
03.014. url: http://www.sciencedirect.com/science/article/
pii/S1631073X08000964 (visited on 11/05/2018).

[23] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. “Robust
uncertainty principles: exact signal reconstruction from highly incom-
plete frequency information”. In: IEEE Trans. Information Theory 52
(2006), pp. 489–509.

[24] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. “Sta-
ble signal recovery from incomplete and inaccurate measurements”.

https://doi.org/10.1109/ALLERTON.2008.4797639
http://ieeexplore.ieee.org/abstract/document/6560426/
https://doi.org/10.1007/978-3-319-16042-9_7
https://doi.org/10.1007/978-3-319-16042-9_7
http://link.springer.com/10.1007/978-3-319-09477-9_5
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1109/TIT.2006.885507
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1016/j.crma.2008.03.014
http://www.sciencedirect.com/science/article/pii/S1631073X08000964
http://www.sciencedirect.com/science/article/pii/S1631073X08000964


REFERENCES 57

In: Communications on Pure and Applied Mathematics 59.8 (2006),
pp. 1207–1223. issn: 1097-0312. doi: 10.1002/cpa.20124. url: http:
//dx.doi.org/10.1002/cpa.20124.

[25] Emmanuel J. Candès and Terence Tao. “Near-Optimal Signal Recovery
From Random Projections: Universal Encoding Strategies?” In: IEEE
Transactions on Information Theory 52 (2006), pp. 5406–5425.

[26] Emmanuel J Candes and David L Donoho. “Curvelets – A Surprisingly
Eective Nonadaptive Representation For Objects with Edges”. en. In:
Curves and Surfaces Fitting. Ed. by L. L. Schumaker, A. Cohen, and
C. Rabut. Nashville, TN: Vanderbilt Univ. Press, 1999, p. 16.

[27] Emmanuel J Candes and Yaniv Plan. “Near-ideal model selection by
$\ell_1$ minimization”. en. In: Annals of Statistics 37 (), pp. 2145–
2177.

[28] Emmanuel Candes and Justin Romberg. “l1-magic: Recovery of sparse
signals via convex programming”. In: URL: www. acm. caltech. edu/l1magic/downloads/l1magic.
pdf 4 (2005), p. 14.

[29] Emmanuel Candes and Terence Tao. “The Dantzig selector: Statistical
estimation when p is much larger than n”. EN. In: The Annals of
Statistics 35.6 (Dec. 2007), pp. 2313–2351. issn: 0090-5364, 2168-8966.
doi: 10.1214/009053606000001523. url: https://projecteuclid.
org/euclid.aos/1201012958 (visited on 11/05/2018).

[30] Avishy Y Carmi, Lyudmila Mihaylova, and Simon J Godsill. Com-
pressed sensing & sparse filtering. Springer, 2016.

[31] Venkat Chandrasekaran et al. “The Convex Geometry of Linear Inverse
Problems”. en. In: Foundations of Computational Mathematics 12.6
(Dec. 2012), pp. 805–849. issn: 1615-3375, 1615-3383. doi: 10.1007/
s10208-012-9135-7. url: https://link.springer.com/article/
10.1007/s10208-012-9135-7 (visited on 07/20/2017).

[32] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker.
“Restricted Isometry of Fourier Matrices and List Decodability of
Random Linear Codes”. en. In: SIAM Journal on Computing 42.5
(Oct. 2013), pp. 1888–1914. issn: 0097-5397, 1095-7111. doi: 10.1137/
120896773. url: http : / / epubs . siam . org / doi / abs / 10 . 1137 /
120896773 (visited on 06/19/2016).

[33] Albert Cohen, Wolfgang Dahmen, and Ronald Devore. “Compressed
sensing and best k-term approximation”. In: J. Amer. Math. Soc (2009),
pp. 211–231.

[34] R. Coifman, F. Geshwind, and Y. Meyer. “Noiselets”. In: Applied
and Computational Harmonic Analysis 10.1 (2001), pp. 27–44. issn:
1063-5203. doi: https : / / doi . org / 10 . 1006 / acha . 2000 . 0313.
url: http://www.sciencedirect.com/science/article/pii/
S1063520300903130.

[35] Wei Dai and Olgica Milenkovic. “Subspace Pursuit for Compressive
Sensing Signal Reconstruction”. In: IEEE Trans. Information Theory
55 (2009), pp. 2230–2249.

https://doi.org/10.1002/cpa.20124
http://dx.doi.org/10.1002/cpa.20124
http://dx.doi.org/10.1002/cpa.20124
https://doi.org/10.1214/009053606000001523
https://projecteuclid.org/euclid.aos/1201012958
https://projecteuclid.org/euclid.aos/1201012958
https://doi.org/10.1007/s10208-012-9135-7
https://doi.org/10.1007/s10208-012-9135-7
https://link.springer.com/article/10.1007/s10208-012-9135-7
https://link.springer.com/article/10.1007/s10208-012-9135-7
https://doi.org/10.1137/120896773
https://doi.org/10.1137/120896773
http://epubs.siam.org/doi/abs/10.1137/120896773
http://epubs.siam.org/doi/abs/10.1137/120896773
https://doi.org/https://doi.org/10.1006/acha.2000.0313
http://www.sciencedirect.com/science/article/pii/S1063520300903130
http://www.sciencedirect.com/science/article/pii/S1063520300903130


58 REFERENCES

[36] Sanjoy Dasgupta and Anupam Gupta. “An elementary proof of a
theorem of Johnson and Lindenstrauss”. In: Random Structures &
Algorithms 22.1 (2003), pp. 60–65. url: http : / / onlinelibrary .
wiley.com/doi/10.1002/rsa.10073/full.

[37] Ronald A. DeVore. “Nonlinear approximation”. In: Acta numerica
7 (1998), pp. 51–150. url: https://www.cambridge.org/core/
journals/acta- numerica/article/nonlinear- approximation/
C8E028C39B8A849690D0EC418516A934.

[38] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded
modeling language for convex optimization”. In: The Journal of Ma-
chine Learning Research 17.1 (2016), pp. 2909–2913.

[39] S. Dirksen, G. Lecué, and H. Rauhut. “On the Gap Between Restricted
Isometry Properties and Sparse Recovery Conditions”. In: IEEE Trans-
actions on Information Theory 64.8 (Aug. 2018), pp. 5478–5487. issn:
0018-9448. doi: 10.1109/TIT.2016.2570244.

[40] David L. Donoho. “Compressed sensing”. In: IEEE Transactions on
Information Theory 52 (2006), pp. 1289–1306.

[41] David L. Donoho and Michael Elad. “Optimally sparse representation
in general (nonorthogonal) dictionaries via `1 minimization”. In: Pro-
ceedings of the National Academy of Sciences 100.5 (2003), pp. 2197–
2202. url: http://www.pnas.org/content/100/5/2197.short.

[42] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. “Stable
recovery of sparse overcomplete representations in the presence of
noise”. In: IEEE Transactions on Information Theory 52 (2006), pp. 6–
18.

[43] David L. Donoho, Iain Johnstone, and Andrea Montanari. “Accurate
Prediction of Phase Transitions in Compressed Sensing via a Connec-
tion to Minimax Denoising”. In: IEEE Transactions on Information
Theory 59 (2013), pp. 3396–3433.

[44] David L. Donoho, Iain Johnstone, and Andrea Montanari. “Accurate
Prediction of Phase Transitions in Compressed Sensing via a Connec-
tion to Minimax Denoising”. In: IEEE Transactions on Information
Theory 59 (2013), pp. 3396–3433.

[45] David L. Donoho, Arian Maleki, and Andrea Montanari. “Message
Passing Algorithms for Compressed Sensing”. In: Proceedings of the
National Academy of Sciences of the United States of America 106 45
(2009), pp. 18914–9.

[46] David L. Donoho and Jared Tanner. “Observed Universality of Phase
Transitions in High-Dimensional Geometry, with Implications for Mod-
ern Data Analysis and Signal Processing”. In: Philosophical transac-
tions. Series A, Mathematical, physical, and engineering sciences 367
1906 (2009), pp. 4273–93.

[47] M. Elad. Sparse and redundant representations: from theory to applica-
tions in signal and image processing. OCLC: ocn646114450. New York:
Springer, 2010. isbn: 978-1-4419-7010-7 978-1-4419-7011-4.

http://onlinelibrary.wiley.com/doi/10.1002/rsa.10073/full
http://onlinelibrary.wiley.com/doi/10.1002/rsa.10073/full
https://www.cambridge.org/core/journals/acta-numerica/article/nonlinear-approximation/C8E028C39B8A849690D0EC418516A934
https://www.cambridge.org/core/journals/acta-numerica/article/nonlinear-approximation/C8E028C39B8A849690D0EC418516A934
https://www.cambridge.org/core/journals/acta-numerica/article/nonlinear-approximation/C8E028C39B8A849690D0EC418516A934
https://doi.org/10.1109/TIT.2016.2570244
http://www.pnas.org/content/100/5/2197.short


REFERENCES 59

[48] Yonina C. Eldar and Gitta Kutyniok, eds. Compressed sensing: theory
and applications. Cambridge ; New York: Cambridge University Press,
2012. isbn: 978-1-107-00558-7.

[49] E. Elhamifar and R. Vidal. “Sparse subspace clustering”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. June
2009, pp. 2790–2797. doi: 10.1109/CVPR.2009.5206547.

[50] Felix Krahmer, Shahar Mendelson, and Holger Rauhut. “Suprema of
Chaos Processes and the Restricted Isometry Property”. In: Com-
munications on Pure and Applied Mathematics 67.11 (Jan. 2014),
pp. 1877–1904. issn: 0010-3640. doi: 10.1002/cpa.21504. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21504 (visited
on 03/23/2018).

[51] Massimo Fornasier and Steffen Peter. “An Overview on Algorithms
for Sparse Recovery”. en. In: Sparse Reconstruction and Compressive
Sensing in Remote Sensing. Ed. by X. Zhu and R. Bamler. Springer,
June 2015, p. 76.

[52] Massimo Fornasier and Holger Rauhut. “Compressive Sensing”. en. In:
Handbook of Mathematical Methods in Imaging. Ed. by Otmar Scherzer.
DOI: 10.1007/978-0-387-92920-0_6. New York, NY: Springer New York,
2011, pp. 187–228. isbn: 978-0-387-92919-4 978-0-387-92920-0. url:
http://link.springer.com/10.1007/978-0-387-92920-0_6.

[53] Simon Foucart. “Flavors of Compressive Sensing”. In: Approximation
Theory XV: San Antonio 2016. Ed. by Gregory E. Fasshauer and
Larry L. Schumaker. Cham: Springer International Publishing, 2017,
pp. 61–104. isbn: 978-3-319-59912-0.

[54] Simon Foucart and Holger Rauhut. A Mathematical Introduction
to Compressive Sensing. Birkhäuser, Basel, 2013. isbn: 0817649476,
9780817649470.

[55] Rina Foygel and Lester W. Mackey. “Corrupted Sensing: Novel Guar-
antees for Separating Structured Signals”. In: IEEE Transactions on
Information Theory 60 (2014), pp. 1223–1247.

[56] David Goldberg et al. “Using Collaborative Filtering to Weave an
Information Tapestry”. In: Commun. ACM 35.12 (Dec. 1992), pp. 61–
70. issn: 0001-0782. doi: 10.1145/138859.138867. url: http://doi.
acm.org/10.1145/138859.138867.

[57] Y. Gordon. “On Milman’s inequality and random subspaces which
escape through a mesh in Rn”. In: Geometric Aspects of Functional
Analysis. Ed. by Joram Lindenstrauss and Vitali D. Milman. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 84–106. isbn: 978-3-
540-39235-4.

[58] João Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. “Theta Bodies
for Polynomial Ideals”. In: SIAM Journal on Optimization 20 (2010),
pp. 2097–2118.

[59] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software
for disciplined convex programming. 2008.

https://doi.org/10.1109/CVPR.2009.5206547
https://doi.org/10.1002/cpa.21504
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21504
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.21504
http://link.springer.com/10.1007/978-0-387-92920-0_6
https://doi.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867


60 REFERENCES

[60] Zhu Han, Husheng Li, and Wotao Yin. Compressive sensing for wireless
networks. Cambridge University Press, 2013.

[61] Ishay Haviv and Oded Regev. “The Restricted Isometry Property of
Subsampled Fourier Matrices”. en. In: Geometric Aspects of Functional
Analysis. Lecture Notes in Mathematics. Springer, Cham, 2017, pp. 163–
179. isbn: 978-3-319-45281-4 978-3-319-45282-1. doi: 10.1007/978-3-
319-45282-1_11. url: https://link.springer.com/chapter/10.
1007/978-3-319-45282-1_11 (visited on 05/04/2018).

[62] William B Johnson and Joram Lindenstrauss. “Extensions of Lipschitz
mappings into a Hilbert space”. In: Contemporary mathematics 26.189-
206 (1984), p. 1.

[63] Vladimir Koltchinskii. Oracle inequalities in empirical risk minimiza-
tion and sparse recovery problems: École d’été de probabilités de Saint-
Flour XXXVIII-2008. Lecture notes in mathematics 2033. OCLC:
ocn733246860. Berlin ; Heidelberg ; New York: Springer Verlag, 2011.
isbn: 978-3-642-22146-0.

[64] Gitta Kutyniok and Demetrio Labate, eds. Shearlets: multiscale analysis
for multivariate data. Applied and numerical harmonic analysis. OCLC:
ocn794844320. New York: Birkhäuser, 2012. isbn: 978-0-8176-8316-0
978-0-8176-8315-3.

[65] Christopher Liaw et al. “A simple tool for bounding the deviation of
random matrices on geometric sets”. In: CoRR abs/1603.00897 (2016).

[66] George G Lorentz et al. Constructive approximation: advanced problems.
English. OCLC: 903339623. Berlin; Heidelberg: Springer, 2005. isbn:
978-3-642-64610-2 978-3-642-60932-9.

[67] S. G. Mallat. A wavelet tour of signal processing: the sparse way.
3rd ed. Amsterdam ; Boston: Elsevier/Academic Press, 2009. isbn:
978-0-12-374370-1.

[68] Christopher A. Metzler, Arian Maleki, and Richard G. Baraniuk. “From
Denoising to Compressed Sensing”. In: IEEE Transactions on Infor-
mation Theory 62 (2016), pp. 5117–5144.

[69] M. Mishali and Y. C. Eldar. “Blind Multiband Signal Reconstruction:
Compressed Sensing for Analog Signals”. In: IEEE Transactions on
Signal Processing 57.3 (Mar. 2009), pp. 993–1009. issn: 1053-587X.
doi: 10.1109/TSP.2009.2012791.

[70] Qun Mo. “A Sharp Restricted Isometry Constant Bound of Orthogonal
Matching Pursuit”. In: CoRR abs/1501.01708 (2015).

[71] Balas Kausik Natarajan. “Sparse approximate solutions to linear sys-
tems”. In: SIAM journal on computing 24.2 (1995), pp. 227–234. url:
http://epubs.siam.org/doi/abs/10.1137/S0097539792240406.

[72] Jelani Nelson, Eric Price, and Mary Wootters. “New constructions of
RIP matrices with fast multiplication and fewer rows”. In: Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics. 2014,
pp. 1515–1528.

https://doi.org/10.1007/978-3-319-45282-1_11
https://doi.org/10.1007/978-3-319-45282-1_11
https://link.springer.com/chapter/10.1007/978-3-319-45282-1_11
https://link.springer.com/chapter/10.1007/978-3-319-45282-1_11
https://doi.org/10.1109/TSP.2009.2012791
http://epubs.siam.org/doi/abs/10.1137/S0097539792240406


REFERENCES 61

[73] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. 1st ed. Springer Publishing Company, Incorporated, 2014. isbn:
1461346916, 9781461346913.

[74] Samet Oymak and Babak Hassibi. “New Null Space Results and Recov-
ery Thresholds for Matrix Rank Minimization”. In: arXiv:1011.6326
[cs, math, stat] (Nov. 2010). arXiv: 1011.6326. url: http://arxiv.
org/abs/1011.6326 (visited on 11/05/2018).

[75] Neal Parikh and Stephen P. Boyd. “Proximal Algorithms”. In: Foun-
dations and Trends in Optimization 1 (2014), pp. 127–239.

[76] F. Parvaresh et al. “Recovering Sparse Signals Using Sparse Measure-
ment Matrices in Compressed DNA Microarrays”. In: IEEE Journal
of Selected Topics in Signal Processing 2.3 (June 2008), pp. 275–285.
issn: 1932-4553. doi: 10.1109/JSTSP.2008.924384.

[77] Y. Plan and R. Vershynin. “Robust 1-bit Compressed Sensing and
Sparse Logistic Regression: A Convex Programming Approach”. In:
IEEE Transactions on Information Theory 59.1 (Jan. 2013), pp. 482–
494. issn: 0018-9448. doi: 10.1109/TIT.2012.2207945.

[78] Y. Plan and R. Vershynin. “The Generalized Lasso With Non-Linear
Observations”. In: IEEE Transactions on Information Theory 62.3
(Mar. 2016), pp. 1528–1537. issn: 0018-9448. doi: 10.1109/TIT.2016.
2517008.

[79] Y. L. Polo et al. “Compressive wide-band spectrum sensing”. In:
2009 IEEE International Conference on Acoustics, Speech and Signal
Processing. Apr. 2009, pp. 2337–2340. doi: 10.1109/ICASSP.2009.
4960089.

[80] Sundeep Rangan. “Generalized approximate message passing for es-
timation with random linear mixing”. In: 2011 IEEE International
Symposium on Information Theory Proceedings (2011), pp. 2168–2172.

[81] Sundeep Rangan, Philip Schniter, and Alyson K. Fletcher. “Vector ap-
proximate message passing”. In: 2017 IEEE International Symposium
on Information Theory (ISIT) (2017), pp. 1588–1592.

[82] Nikhil S. Rao, Benjamin Recht, and Robert D. Nowak. “Universal
Measurement Bounds for Structured Sparse Signal Recovery”. In:
AISTATS. 2012.

[83] Holger Rauhut. “Circulant and Toeplitz Matrices in Compressed Sens-
ing”. en. In: SPARS’09 - Signal Processing with Adaptive Sparse Struc-
tured Representations. Saint Malo, France, Apr. 2009, p. 7.

[84] Holger Rauhut and Rachel Ward. “Sparse recovery for spherical har-
monic expansions”. In: Proc. SampTA 2011. 2011.

[85] Ralph Tyrell Rockafellar. Convex analysis. Princeton university press,
2015.

[86] Mark Rudelson and Roman Vershynin. “On Sparse Reconstruction
from Fourier and Gaussian Measurements”. In: 2006.

[87] Mark Rudelson and Roman Vershynin. “On sparse reconstruction from
Fourier and Gaussian measurements”. en. In: Communications on Pure

http://arxiv.org/abs/1011.6326
http://arxiv.org/abs/1011.6326
https://doi.org/10.1109/JSTSP.2008.924384
https://doi.org/10.1109/TIT.2012.2207945
https://doi.org/10.1109/TIT.2016.2517008
https://doi.org/10.1109/TIT.2016.2517008
https://doi.org/10.1109/ICASSP.2009.4960089
https://doi.org/10.1109/ICASSP.2009.4960089


62 REFERENCES

and Applied Mathematics 61.8 (Aug. 2008), pp. 1025–1045. issn: 1097-
0312. doi: 10.1002/cpa.20227. url: http://onlinelibrary.wiley.
com/doi/10.1002/cpa.20227/abstract (visited on 06/19/2016).

[88] Shriram Sarvotham, Dror Baron, and Richard G. Baraniuk. “Mea-
surements vs. bits: Compressed sensing meets information theory”. In:
Allerton Conference on Communication, Control and Computing. 2006.
url: https://scholarship.rice.edu/handle/1911/20323.

[89] Nathan Srebro and Adi Shraibman. “Rank, Trace-Norm and Max-
Norm”. In: COLT. 2005.

[90] Mihailo Stojnic. “`1 optimization and its various thresholds in com-
pressed sensing”. In: 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing (2010), pp. 3910–3913.

[91] Gongguo Tang et al. “Compressed sensing off the grid”. In: IEEE
transactions on information theory 59.11 (2013), pp. 7465–7490. url:
http://ieeexplore.ieee.org/abstract/document/6576276/.

[92] Robert Tibshirani et al. “Sparsity and smoothness via the fused lasso”.
In: Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 67.1 (2005), pp. 91–108.

[93] Ryan J. Tibshirani. “The Lasso Problem and Uniqueness”. In: 2012.
[94] Andreas M. Tillmann and Marc E. Pfetsch. “The Computational Com-

plexity of the Restricted Isometry Property, the Nullspace Property,
and Related Concepts in Compressed Sensing”. In: IEEE Trans. In-
formation Theory 60 (2014), pp. 1248–1259.

[95] Joel A. Tropp. “Greed is good: Algorithmic results for sparse approxi-
mation”. In: IEEE Transactions on Information theory 50.10 (2004),
pp. 2231–2242. url: http : / / ieeexplore . ieee . org / abstract /
document/1337101/.

[96] Roman Vershynin. “Estimation in High Dimensions: A Geometric Per-
spective”. In: Sampling Theory, a Renaissance: Compressive Sensing
and Other Developments. Ed. by Götz E. Pfander. Cham: Springer
International Publishing, 2015, pp. 3–66. isbn: 978-3-319-19749-4. doi:
10.1007/978-3-319-19749-4_1. url: https://doi.org/10.1007/
978-3-319-19749-4_1.

[97] Roman Vershynin. “Introduction to the non-asymptotic analysis of
random matrices”. In: Compressed sensing, Theory and Applications.
Cambridge Univ. Press, Cambridge, 2012, pp. 210–268.

[98] L. Welch. “Lower bounds on the maximum cross correlation of signals
(Corresp.)” In: IEEE Transactions on Information Theory 20.3 (May
1974), pp. 397–399. issn: 0018-9448. doi: 10.1109/TIT.1974.1055219.

[99] J. Wright et al. “Robust Face Recognition via Sparse Representation”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
31.2 (Feb. 2009), pp. 210–227. issn: 0162-8828. doi: 10.1109/TPAMI.
2008.79.

https://doi.org/10.1002/cpa.20227
http://onlinelibrary.wiley.com/doi/10.1002/cpa.20227/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpa.20227/abstract
https://scholarship.rice.edu/handle/1911/20323
http://ieeexplore.ieee.org/abstract/document/6576276/
http://ieeexplore.ieee.org/abstract/document/1337101/
http://ieeexplore.ieee.org/abstract/document/1337101/
https://doi.org/10.1007/978-3-319-19749-4_1
https://doi.org/10.1007/978-3-319-19749-4_1
https://doi.org/10.1007/978-3-319-19749-4_1
https://doi.org/10.1109/TIT.1974.1055219
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.1109/TPAMI.2008.79


REFERENCES 63

[100] Stephen J. Wright, Robert D. Nowak, and Mário A. T. Figueiredo.
“Sparse Reconstruction by Separable Approximation”. In: IEEE Trans.
Signal Processing 57 (2008), pp. 2479–2493.

[101] Hui Zhang, Wotao Yin, and Lizhi Cheng. “Necessary and Sufficient
Conditions of Solution Uniqueness in 1-Norm Minimization”. In: J.
Optimization Theory and Applications 164 (2015), pp. 109–122.

[102] Y Zhang, J Yang, and Wotao Yin. “YALL1: Your algorithms for L1”.
In: online at http://yall1. blogs. rice. edu (2011).

Niklas Koep
Arash Behboodi
Rudolf Mathar


	1. Introduction
	Organization
	Motivation

	2. Preliminaries
	2.1. Norms and Quasi-Norms
	2.2. Random Variables, Vectors and Matrices

	3. Signal Models
	3.1. Sparse Vectors
	Compressible Vectors

	3.2. Block- and Group-Sparse Vectors
	3.3. Low-Rank Matrices
	Representability of Atomic Norms


	4. Recovery of Individual Vectors
	4.1. Exact Recovery
	Extensions to Noisy Recovery and Subgaussian Observations

	4.2. Connections to Conic Integral Geometry

	5. An Appetizer: Exact Recovery of Sparse Vectors
	6. Characterization of Measurement Matrices
	6.1. Null Space Property
	6.2. Restricted Isometry Property
	6.3. Mutual Coherence
	6.4. Quotient Property

	7. Probabilistic Constructions of Measurement Matrices
	7.1. Restricted Isometries
	7.1.1. Bounded Orthonormal Systems

	7.2. Random Matrices and the Null Space Property

	8. An Algorithmic Primer
	8.1. Convex Programming
	8.2. Thresholding Algorithms
	8.2.1. Hard Thresholding
	Iterative Hard Thresholding
	Hard Thresholding Pursuit
	8.2.2. Soft Thresholding
	Approximate Message Passing

	8.3. Greedy Methods
	Orthogonal Matching Pursuit
	Compressive Sampling Matching Pursuit

	8.4. Iteratively Reweighted Least-Squares

	References

