
EXPECTED VALUE OF LOGARITHM OF A NON-CENTRAL

CHI-SQUARED RANDOM VARIABLE

Abstract. In this note, we derive various closed-form expressions for the expectation of the
logarithm of a non-central chi-squared random variable with odd degrees of freedom.

A non-central χ2 distributed random variableW withm degrees of freedom and non-centrality
parameter ξ =

∑m
i=1 µ

2
i is defined as:

(1) W =
m∑
i=1

(Xi + µi)
2,

where {Xi}mi=1 ∼ N (0, 1) and {µi}mi=1 are positive constants. The goal is to derive tractable
expressions for the expected value of logarithm of W . The first result is given below.

Theorem 1. Let W be a non-central χ2 distributed random variable with m degrees of freedom
and non-centrality parameter ξ. Then it holds that

E(logW ) = E(ψ(Z +m/2))− log 2,

where Z is a Poisson random variable with parameter ξ/2. Equivalently:

E(ψ(Z +m/2)) =
∞∑
k=0

1

2k
ξke−ξ/2

k!
ψ(k +m/2),

and ψ(·) is the digamma function, also known as Euler’s psi function:

ψ(x) =
Γ′(x)

Γ(x)
.

Proof. The proof follows closely a similar proof in [1, Lemma 10.1]. The density of W is given
by:

fW (x) =
1

2

(
x

ξ

)(m−2)/4

e−(x+ξ)/2Im/2−1(
√
ξx) x ≥ 0,

where Iν(·) is the modified Bessel function of the first kind of order ν defined as:

Iν(x) =
∞∑
k=0

1

k!Γ(k + ν + 1)

(x
2

)2k+ν
.

Therefore using the series expansion of Iν(·), the expected value can be written as:

E(logW ) =

∫ ∞
0

log x
1

2

(
x

ξ

)(m−2)/4

e−(x+ξ)/2Im/2−1(
√
ξx)dx

=

∫ ∞
0

log x
1

2

(
x

ξ

)(m−2)/4

e−(x+ξ)/2

×
∞∑
k=0

1

k!Γ(k +m/2)

(√
ξx

2

)2k+m/2−1

dx

=

∞∑
k=0

1

22k+m/2

ξke−ξ/2

k!Γ(k +m/2)

∫ ∞
0

log xe−x/2xk+m/2−1dx

The last integral can be simplified using [2, 4.352(1)] as∫ ∞
0

log xe−x/2xk+m/2−1dx = 2k+m/2Γ(k +m/2)(ψ(k +m/2)− log 2).
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The final expectation is given by:

E(logW ) =
∞∑
k=0

1

2k
ξke−ξ/2

k!
ψ(k +m/2)−

∞∑
k=0

log 2

2k
ξke−ξ/2

k!

=
∞∑
k=0

1

2k
ξke−ξ/2

k!
ψ(k +m/2)− log 2.

�

The above theorem expresses the integral formulation of the expected value as an infinite
series. The expected value can be approximated arbitrarily well using the series, and it is easier
to evaluate in general. A further simplification was obtained for even m. For this case, the
digamma function writes as:

(2) ψ(k +m/2) =

k+m/2−1∑
j=1

1

j
− γ,

where γ ≈ 0.577 is the Euler-Mascheroni constant. This expression was used to derive a simpler
expression of the expected value for even m in [3] with the proof in [1]. We provide a similar
expression for odd m. The digamma function for odd m writes as:

(3) ψ(k +m/2) = −γ − 2 log 2 +

k+(m−1)/2∑
j=1

2

2j − 1
.

The following theorem provides a computationally simpler expression than the theorem above
for the expected value of logW .

Theorem 2. Let W be a non-central χ2 distributed random variable with odd m degrees of
freedom and non-centrality parameter ξ. Then it holds that

E(logW ) = C0 +
1

Cm

(
1√
π
h1(ξ/2)− h̃m(ξ/2)

)
,

where:

C0 = −γ − 3 log 2, Cm =
(−1)[m/2]

Γ(m/2)
,

h1(t) =
1√
2π

∫ ∞
−∞

log(x+
√

2t)2e−x
2/2dx+ γ + 2 log(2),

h̃m(t) =

[m/2]−1∑
j=0

tj+1(−1)j

(j + 1)Γ(j + 3/2)
.

Proof. For m odd, we have:

E(ψ(Z+m/2))− log 2 = −γ − 3 log 2 + E

Z+(m−1)/2∑
j=1

2

2j − 1

 .

Define the function hm(t) as:

hm(t) = E

Z+(m−1)/2∑
j=1

2

2j − 1

 =

∞∑
k=0

e−ttk

k!

k+(m−1)/2∑
j=1

2

2j − 1

 ,

and see that:

h′m(t) =

∞∑
k=0

e−ttk

k!

1

k +m/2
.
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Figure 1. The function h1(t)

We find another representation of h′m(t) that contains only finite sums and provides a more
concise version of hm(t). The following lemma, a generalization of a familiar combinatorial
equality, is used for the proof.

Lemma 1. Let x ∈ R+ and k ∈ N such that k > x. We have:

[x]−1∑
j=0

(−1)j

Γ(j + {x}+ 1)(k − j)!
= − x(−1)[x]

(k + {x})(k − [x])!Γ(x+ 1)
+

{x}
(k + {x})Γ({x}+ 1)k!

.

The previous lemma yields that:

[m/2]−1∑
j=0

(−1)j

Γ(j + 3/2)(k − j)!
= − m(−1)[m/2]

2(k + 1/2)(k − [m/2])!Γ(m/2 + 1)
+

1

2(k + 1/2)Γ(3/2)k!
.(4)

Consider the following expression of h′m(t):

h′m(t) =
∞∑
k=0

e−ttk

k!

1

k +m/2
= e−t

∞∑
k=[m/2]

tk

(k − [m/2])!

1

k + 1/2
,

Using (4) with the above equality, we obtain:

m(−1)[m/2]

2Γ(m/2 + 1)

∞∑
k=[m/2]

e−ttk

(k + 1/2)(k − [m/2])!

=

∞∑
k=[m/2]

e−ttk

2(k + 1/2)Γ(3/2)k!
−

∞∑
k=[m/2]

[m/2]−1∑
j=0

e−ttk(−1)j

Γ(j + 3/2)(k − j)!
.

Let us focus on each of these terms. Consider the first term:
∞∑

k=[m/2]

e−ttk

2(k + 1/2)Γ(3/2)k!
=

1√
π

∞∑
k=[m/2]

e−ttk

(k + 1/2)k!

=
1√
π
h′1(t)− 1√

π

[m/2]−1∑
k=0

e−ttk

(k + 1/2)k!
.
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Note that:

(5) h1(t) = E(logW ′) + γ + 2 log 2,

where W ′ is equal to (X +
√

2t)2 for X as a standard normal distributed random variable:

h1(t) =
1√
2π

∫ ∞
−∞

log(x+
√

2t)2e−x
2/2dx+ γ + 2 log(2).

The second term can be characterized as:
∞∑

k=[m/2]

[m/2]−1∑
j=0

e−ttk(−1)j

Γ(j + 3/2)(k − j)!

=
∞∑
i=0

[m/2]−1∑
j=0

e−tti+j(−1)j

Γ(j + 3/2)i!
−

[m/2]−1∑
k=0

k∑
j=0

e−ttk(−1)j

Γ(j + 3/2)(k − j)!
,

but then:
∞∑
i=0

[m/2]−1∑
j=0

e−tti+j(−1)j

Γ(j + 3/2)i!
=
∞∑
i=0

e−tti

i!

[m/2]−1∑
j=0

tj(−1)j

Γ(j + 3/2)

=

[m/2]−1∑
j=0

tj(−1)j

Γ(j + 3/2)
.

Assuming Cm = m(−1)[m/2]

2Γ(m/2+1) = (−1)[m/2]

Γ(m/2) , we have:

Cmh
′
m(t) =

1√
π
h′1(t)− 1√

π

[m/2]−1∑
k=0

e−ttk

(k + 1/2)k!

−
[m/2]−1∑
j=0

tj(−1)j

Γ(j + 3/2)
+

[m/2]−1∑
k=0

k∑
j=0

e−ttk(−1)j

Γ(j + 3/2)(k − j)!
.

It can be seen that:

1√
π

1

(k + 1/2)k!
=

k∑
j=0

(−1)j

Γ(j + 3/2)(k − j)!
,

which implies that:

1√
π

[m/2]−1∑
k=0

e−ttk

(k + 1/2)k!
=

[m/2]−1∑
k=0

k∑
j=0

e−ttk(−1)j

Γ(j + 3/2)(k − j)!
,

hence:

Cmh
′
m(t) =

1√
π
h′1(t)−

[m/2]−1∑
j=0

tj(−1)j

Γ(j + 3/2)
.(6)

A simple integration with adjustment of the respective constant shows that:

Cmhm(t) =
1√
π
h1(t)−

[m/2]−1∑
j=0

tj+1(−1)j

(j + 1)Γ(j + 3/2)
,

with h1(t) given in (5). The function h1(t) is given in Figure 1. The proof follows from the
above result. �
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[2] I. S. Gradshtĕın and D. Zwillinger, Table of integrals, series, and products, eng, Eighth
edition. Elsevier, Academic Press, 2015.

[3] S. M. Moser, “Expectations of a noncentral chi-square distribution with application to IID
MIMO Gaussian fading,” in 2008 International Symposium on Information Theory and Its
Applications, Dec. 2008, pp. 1–6.


