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Abstract—Consider a slowly fading Gaussian relay channel
where the source is not aware of channel state information
(CSI) and the relay is only partially aware of CSI. As a single
cooperation strategy, Decode-and-Forward (DF) or Compress-
and-Forward (CF), is not the best for all channel states, the
relay should be able to switch between them according to its CSI.
However as the source cannot be aware of chosen cooperative
strategy, it should use so called oblivious codes that perform
equally well under different cooperative strategies. In this paper,
we prove that doubly nested lattice codes is an oblivious code
which can be used to achieve DF, CF or point-to-point rate in
the relay channels. Using the oblivious lattice coding, the relay,
according to its CSI, decides to use DF, CF or no cooperation
at all. We show that inner bound on outage probability is
significantly improved if the oblivious lattice code is used with
selective coding strategy at the relay.

I. INTRODUCTION

In the original formulation for the problem of single relay
channel [1], [2], the channel was assumed to be a conditional
probability known to both encoders and decoders. Nonetheless,
frequently in the practical communication system, the condi-
tional probability corresponding to the channel variates due to
the effect of a set of parameters such as fading and mobility.
As the source does not have any observation of the channel,
the information about these parameters is usually not available
at the source and it may be only partly available at the relay. A
common model for this situation is channels with state where
the state is chosen before the communication and does not
change during the communication however the source is not
aware of the realization of the state. This case corresponds to
quasi-static channel or slowly fading channels. The capacity of
this class of channels has been studied in the literature using
notions such as capacity-versus-outage for composite channels
and the ε−capacity of averaged channels [3].

In the static channels, the superposition coding is used at the
source if the relay intends to use Decode-and-Forward (DF)
while a conventional single user code is used at the source
in Compress-and-Forward (CF) case. In quasi-static channels,
neither DF nor CF can perform better than the other for all
possible channel states. Sometimes, the relay should choose
DF and sometimes CF. But the source, unaware of channel
realization, cannot know this in advance. An oblivious code
is the code that can be used at the source and performs
well regardless of relay strategy. This enables the relay to
adaptively change its cooperative strategies. The authors in

[4], [5] proved that the superposition coding is an oblivious
good which means that it can also be used to achieve the CF
rate. The authors introduced selective coding strategy at the
relay where they proved that it is always beneficial for the
relay to use DF if it can decode the source message according
to its own CIS. In this work, we argue whether the similar
results obtained for random coding applies also for structural
codes too. In other words, we show that there is a lattice code
which can be used to achieve both CF rate and DF rate.

There are significant amount of research on structural codes
and its application to different multi-user information theory
problems [6]–[9]. Moreover the doubly nested lattice code has
been shown to achieve DF rate [10], [11] while the CF rate is
obtained using single nested lattice codes. Another interesting
line of work is Compute-and-Forward (CompF) scheme [12]
which is shown to outperform the DF and CF rates in some
scenario. Therefore for general slowly fading multi-terminal
networks, the relays should be able to switch between DF, CF
and CompF according to channel condition. A first step toward
this general selective coding strategy is to show that there is an
oblivious lattice code which works well for single user case.
We show that doubly nested lattice codes are oblivious codes
that can be used to achieve the achievable rate of DF, CF and
single user channels.

The paper is organized as follows. Next section is dedicated
to the definitions and overview of lattice codes used in the
literature. In the section III we discuss about oblivious nested
lattice codes and prove that it achieves DF and CF rate both. In
the next section, numerical results are provided for selective
coding strategy at the relay where a significant improve in
throughput is observed.

II. MAIN DEFINITIONS AND PROBLEM STATEMENTS

A. Relay Channels

Consider a set of relay channels
{
PY n2θY n1θr |X

nXn1θr

}∞
n=1

where the parameters θ = (θd, θr) ∈ Θ represent the channel
state information. The parameter θr ∈ Θr and θd ∈ Θd
respectively refer to CSI of the relay output and the CSI of
destination. The channel, i.e. θ, is chosen at the beginning of
communication according to Pθ and remains fixed during the
rest of communication. Each channel is denoted by conditional
PD

{
PY2θY1θr |XX1θr

: X × X1 7−→ Y1 × Y2
}
.

The channel parameters affecting relay and destination
outputs θ = (θr, θd) are assumed to be unknown at the source,
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Fig. 1: Relay Channels with State

fully known at the destination and partly known θr at the relay
end.

This channel in Fig. 1 belongs to a more general class of
channels known as channel with state, which is in general
a model for situations in which the channel variation is
controlled by another random variable, called S. By changing
S, the channel is changed. In this case the state is chosen
before the communication starts and does not change during
the communication however the encoder is not aware of the
realization of the state. This case corresponds to quasi-static
channel or slowly fading channels. The state Si at the time i is
equal to θ ∈ Θ for all i’s where Θ is set of all possible states.
The compound capacity of this channel can turn out to be
zero and therefore we have to consider probability distribution
attributed to θ.

One option is to allow error for some states provided
that the probability of those states does not exceed certain
threshold. Hence, the encoder chooses a fixed rate and if the
fading coefficient is such that the message cannot be correctly
decoded, an outage is declared. The probability assigned to this
event is called outage probability. For an arbitrary channel with
states, the outage event is declared after n transmission with
an outage identification function In [13] which is a function of
channel states, defined as In : Θ → {0, 1}. For this definition,
the outage is declared when In(θ) = 0 and therefore the
outage probability is defined as:

Pn,out = Pr(In(θ) = 0).

Definition 1 (Code and outage probability). A code-C(n,Mn)
for the composite relay channel consists of:
• An encoder mapping {ϕ :Mn 7−→ Xn},
• A set of decoder mappings {φθ : Yn2 7−→Mn}, for all
θ ∈ Θ

• A set of relay functions
{
fi,θr : Yi−11 7−→ X1

}n
i=1

, for
some set of uniformly distributed message W ∈ Mn ={
1, . . . ,Mn

}
and for all θr ∈ Θr. Note that only partial

CSI at the relay is assumed (denoted by θr) which is
mainly related to the source-relay link.

• Outage identification function In : Θ → {0, 1}.
A pair of rate-outage probability (R, ε) is said to be achiev-
able, if there exists a code-C(n,Mn) such that:

lim inf
n→∞

1

n
logMn ≥ R and Pn,out ≤ ε (1)

and

lim sup
n→∞

Pr
{
φθ(Y

n
2θ) 6=W

∣∣In(θ) = 1
}
= 0. (2)

For the example of slowly fading channels, the outage iden-
tification function is simply an indicator function, indicating
whether the transmission rate is smaller than the capacity of
the channel with realized fading coefficients. The capacity
versus outage with outage probability ε, Cout,ε is defined as
the supremum of all achievable rates with maximum outage
probability ε. Here we are concerned with the AWGN slowly
fading relay channel where θr and θd is the fading coefficients
of channels to the relay and to the destination, respectively.

B. Lattice Codes

In this part, we overview some of well known results on
lattice codes that can be found in [6], [7]. Lattices are simply
set of all integer linear combination of basis vectors in Rn
which is Λ = {Gx : x ∈ Zn} where G = [g1 . . .gn] with
gi ∈ Rn. They are considered as generalization of linear
block codes and also the idea of constellation. Lattices can
be used for quantization. For instance each point in Rd can
be associated with the nearest lattice points which results in
nearest neighbor lattice quantizer Q(x) = argminλ∈Λ ‖x−λ‖.
The fundamental Voronoi region of lattice Λ is defined as
the set of all points that are quantized to zero, namely
V = {x : Q(x) = 0}. The modulo-Λ operation is defined
as x modVΛ = x − Q(x). The fundamental Voronoi region
is important because it corresponds to nearest neighbor de-
coding/quantization region. Probability of error in each case
is related to the probability that the received/quantized vector
falls outside the Voronoi region around the original vector. The
volume of Voronoi region VΛ is given by |det(G)|. Energy per
dimension, i.e. mean squared quantization or second moment
of lattice is defined as the power per dimension of a random
variable uniformly distributed over V:

σ2
Λ =

1

n
E(‖X‖2) =

∫
V
‖X‖2 1

nVΛ
dX.

Normalized second moment (NSM) is defined as G(Λ) = σ2
Λ

V
2
n
Λ

.

NSM is invariant under scaling and orthonormal transforma-
tion. The value of NSM for a ball of radius R, in n dimensional
space tends to 1

2πe as n goes to infinity. Note that the entropy
of a uniformly distributed random variable inside V is equal to
1
2 log(

σ2
Λ

G(Λ) ). Intuitively, NSM replaces 1
2πe in the formula for

the entropy of a Gaussian random variable with variance σ2.
We are interested in those Λn for which G(Λn) is minimum
and therefore the entropy of a uniform RV over V is maximum.
This amounts to having limn→∞G(Λn) = 1

2πe . These are
called good for mean-squared error quantization. One class
of lattices, satisfying this property, are Rogers good lattices.
A sequence of n-dimensional lattices Λn is Rogers good if:

lim
n→∞

rncov

rneff
= 1.

rncov is the covering radius, the radius of smallest ball including
the fundamental Voronoi region and rneff is the effective radius
of lattice, the radius of a ball with the same volume as the
fundamental Voronoi region. If we look for good lattices for
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Fig. 2: Doubly Nested Lattice Code

channel coding over AWGN channel, those lattices should
have a fundamental Voronoi region such that the probability
of error, i.e. probability of noise falling outside that region, is
exponentially diminishing. A specific sense of such goodness
is captured by Poltyrev good lattices. A sequence of n-
dimensional lattices Λn is Poltyrev good, if for n-dimensional
i.i.d. Gaussian noise Zn with power PN , we have:

Pr(Zn /∈ VΛn) ≤ e−n(EP (µ)−on(1)).

µ is the volume-to-noise ratio (VNR) which is defined as:

µ =
(VΛn)

2
n

2πePN
+ on(1) =

σ2
Λn

PN

1

2πeG(Λn)
+ on(1)

and EP (µ) is the Poltyrev exponent and it is defined as:

EP (µ) =


1
2 [(µ− 1)− logµ] 1 < µ < 2
1
2 log

eµ
4 2 ≤ µ ≤ 4

µ
8 µ ≥ 4

Note that interestingly enough, the effective power of lattice

constellation is (VΛn )
2
n

2πe which is only equal to the energy per
dimension of lattice for other kinds of lattices. Poltyrev good
lattices guarantee only the vanishing error probability for good
choice of VNR. This good choice corresponds to the choice
of µ > 1.

The idea of constellation is mimicked by using two lattices.
The fundamental Voronoi region of the first lattice, which is
the coarser lattice, guarantees the power constraint of the code
while the finer lattice provides the constellation points inside
the Voronoi region of the coarser lattice. This structure is
called nested lattice codes with Λ ⊂ Λc where the constellation
points are chosen from V ∩ Λc. The rate of the nested lattice
code is then defined as R = 1

n log VΛ
VΛc

. The capacity of AWGN
channels can be achieved using nested lattice with similar
guidelines from random coding argument. Codewords are
designed to have Gaussian distribution to guarantee maximum
entropy. To do this, after selecting the constellation point, we

add U , a uniformly distributed RV over V , known as dither,
to the lattice point. The following lemma guarantees that the
channel input has also uniform distribution over V .

Lemma 1. (Crypto lemma) For any random variable X de-
fined over Voronoi region V , and an independent uniformly dis-
tributed random variable U over V . Then Y = X+U modVΛ
is also uniformly distributed over V and it is statistically
independent of X .

If we choose the coarser lattice to be Rogers good, then the
channel input will asymptoticly have Gaussian-like entropy.
The coarser lattice should also be Poltyrev good. With this
choice, the coarser lattice provides us with proper input
distribution and power constraint. The finer lattice should only
be Poltyrev good to be good for AWGN decoding. At the
end, the original AWGN channel is converted to the following
equivalent modulo-lattice channel.

Lemma 2. (Inflated lattice lemma) Consider the AWGN chan-
nel, namely Y = X + Z. If t ∈ V is the codeword and the
dither U , one can send Xt = [t − U ] modVΛ and then find
Y ′ = [αY + U ] modVΛ. The channel is then represented as
Y = [t+ Z ′] modVΛ where Z ′ = [αZ + (1− α)U ] modVΛ.

The parameter α is chosen as MMSE coefficient and its role
is to inflate the Voronoi region to include the noise sphere.

III. OBLIVIOUS NESTED LATTICE CODING

To extend the previous setting to relays, we have to extend
the nested lattice codes to nested lattice chains. Doubly nested
lattice code, Figure 2, is defined by three lattices Λ,Λs, Λc,
satisfying Λ ⊂ Λs ⊂ Λc. Doubly nested lattice codes can
be employed to achieve Decode-and-Forward region either
by using list decoding [10] or by using cloud-satellite codes
[11]. We choose the later code however the former can
be equally used. The original constellation points belong to
V ∩ Λc. Each t ∈ V ∩ Λc can be written as t0 + t1. t0
belongs to V ∩Λs and presents the coarser constellation. Each
t0+Vs contains a subset of original constellation. t1 provides
resolution information to find the exact t0+Vs and it is chosen
from Vs ∩ Λc. The structure is reminiscent of superposition
coding with cloud centers and satellites. The rate of lattices
are defined similarly to be R = 1

n log VΛ
VΛc

and R0 = 1
n log

VΛs
VΛc

and R1 = R−R0. Λc needs to be only Poltyrev good while the
other two lattices should be both Rogers and Poltyrev good.
The following theorem states the achievability of DF rate with
this lattice code.

Theorem 1. ( [10], [11]) Doubly nested lattice code can be
used to achieve DF achievable rate region for AWGN relay
channel.

Proof. We use backward decoding for the proof nevertheless
the idea follows the similar line as in [11]. In any case we
present outline of the proof, as it is used for the next theorems.

Consider a doubly nested lattice code with Λ,Λs, Λc, satis-
fying Λ ⊂ Λs ⊂ Λc with Λ satisfying unit power. The original
constellation points belong to V ∩ Λc. Each t ∈ V ∩ Λc can



be written as t0 + t1. t1 belongs to V ∩ Λs and presents
the coarser constellation. Each t1 + Vs contains a subset of
original constellation. t0 provides resolution information to
find the exact t1 + Vs and it is chosen from Vs ∩ Λc. The
structure is reminiscent of superposition coding with cloud
centers and satellites. The rate of lattices are defined similarly
to be R = 1

n log VΛ
VΛc

and R0 = 1
n log

VΛs
VΛc

and R1 = R−R0.
Λc needs to be only Poltyrev good while the other two lattices
should be both Rogers and Poltyrev good.

2nR messages are associated to constellation points t in
V ∩ Λc. Each point is written as t0 + t1 which is similar to
writing t as sum of two messages with rate R0 and R1. At
the block i, the source sends t(i) with t0(i− 1) after adding
dithers U,Us as follows:

X(i) =
√
αP ([t1(i) + t0(i)− U ] mod VΛ)

+
√
αP ([t0(i− 1)− Us] mod VsΛ

∗
s)

where Λ∗s, Λ
∗
c are scaled lattices to satisfy unit power. The

relay observes Y1(i) = X(i) +Z1(i) and then it decodes t(i)
after the block i, knowing t0(i−1). Assuming same noise N ,
the condition for correct decoding is as follows:

R ≤ 1

2
log(1 +

αP

N
). (3)

In block i, it forwards t0(i− 1) as follows:

X1(i) =
√
P1([t0(i− 1)− Us] mod VsΛ

∗
s).

The destination therefore receives the following:

Y2(i) = Z2(i) +
√
αP ([t1(i) + t0(i)− U ] mod VΛ)

+ (
√
αP +

√
P1)([t0(i− 1)− Us] mod VsΛ

∗
s).

Decoding starts backwardly. The destination decodes first t0(b)
at the block b + 1, and then it decodes t1(b) from the block
b, assuming that all t1(b + j), t0(b + j) are known and their
terms are subtracted:

Y2(b+ 1) =Z2(b+ 1)

+ (
√
αP +

√
P1)([t0(b)− Us] mod VsΛ

∗
s).

t0(b) is decoded correctly, after using inflated lattice lemma
with the choice of MMSE estimator, if R0 ≤ 1

2 log(1 +√
αPP1+P1+αP

N ). Knowing t0(b) we subtract it from Y2(b) and
we have:

Ỹ2(b) = Z2(b) +
√
αP [t1(b)− U ] mod VΛ

+ (
√
αP +

√
P1)[t0(b− 1)− Us] mod VsΛ

∗
s.

Note that all terms pertaining to t0(b − 1) are uniformly
distributed according to Crypto lemma and act like noise for
t1(b), which is then decoded correctly if:

R1 ≤
1

2
log(1 +

αP√
αPP1 + P1 + αP +N

).

As a result, the final rate R is achievable if:

R = R1 +R0 ≤
1

2
log(1 +

√
αPP1 + P1 + P

N
). (4)

The DF rate is obtained using (3) and (4). �

In the next theorem, we prove that that doubly nested lattice
codes can achieve the capacity of single user (SU) channel.

Theorem 2. Doubly nested lattice codes with Λ,Λs, Λc,
satisfying Λ ⊂ Λs ⊂ Λc with Λ satisfying unit power can
be used to achieve the capacity of single user channel namely
1
2 log(1 +

P
N ).

Proof. As we have seen in the proof of previous theorem, the
destination can use backward decoding to recover all messages
even if the relay is not present. This is equivalent to putting
the relay power to zero. �

An important consequence of Theorem 2 is that if the
source uses doubly nested lattice code with the hope that the
relay is helping the decoding process and yet the relay is not
present, the communication does not suffer from this absence
and the destination can still achieve the single user channel
capacity. In slowly fading channels, this means that the relay
can switch between transmission and silence in function of
channel condition and the message can still be decoded. In
other words, doubly nested lattice code is an oblivious code.

Another question is whether doubly nested lattice code can
also be used for CF relaying. If this is the case, the relay can
switch between DF and CF without any loss in performance
and without the need for the source to know which strategy
is used. The next theorem present results in this direction.

Theorem 3. (Doubly nested lattice codes with Λ,Λs, Λc,
satisfying Λ ⊂ Λs ⊂ Λc with Λ satisfying unit power can
achieve the CF rate of the relay channels.

Proof. The encoder is supposed to use the same doubly nested
lattice code as introduced before. On the other hand, the
relay uses CF strategy which means that it compresses its
observation with a given distortion and transmits it to the
destination. A modified version of lattice coding for Wyner-Ziv
has been used to achieve Compress-and-Forward rate in [10]
where the relay uses a single nested lattice code to quantize
its channel observation. The finer lattice guarantees that the
quantization distortion does not exceed N̂1 and the coarser
lattice is designed in a way that its Voronoi region contains
the relay observation Y1 after scaling, dithering and added side
information. The quantized version is transmitted through the
channel and is decoded using the side information. The details
are exactly same as [10] and we omit the proof. The distortion
D should satisfy at the end the following constraint:

N̂1 ≥ N1

P ( 1
N1

+ 1
N2

) + 1
P1

N2

.

The decoding starts backwardly and we assume that the
destination starts at the block B + 2 to decode Ŷ1(B + 1)
and continue backwardly to decode other quantized version.

After the correct decoding of Ŷ1, maximum ratio combining
(MRC) is used to combine it with Y2 to decode the proper
messages. Following lemma provides slightly more general
results on MRC.



Lemma 3. Consider a SIMO AWGN channel defined by Yi =
X + U + Zi for i ∈ {1, 2, . . . , n} where the same X and U
are transmitted over all channels with power P and P1. Then
the maximum ratio combining achieves the capacity of this
channel with the ratio αi of Yi chosen as αi =

∏
j 6=iNj∑

i

∏
j 6=iNj

.

The capacity of this channel is equal to C = 1
2 log(1+

P
P1+Ñ

)

where Ñ =
(

1
N1

+ · · ·+ P
Nn

)−1
.

Proof. The proof of theorem follows from direct calculation.
The capacity of this channel is known as I(X;Y1 . . . Yn),
which is obtained by decoding Xn using all Y ni and is
obtained as C = 1

2 log(1+
P

P1+Ñ
). It only remains to show that

the same can be achieved through MRC. This can be verified
by choosing αi as in Lemma (3) and using Ỹ =

∑
i αiYi for

decoding. Note that when P1 = 0, the capacity is simply equal
to 1

2 log(1 +
P
N1

+ · · ·+ P
Nn

). �

MRC can be directly applied to single nested lattice codes
to achieve CF rate as in [10]. Using MRC at the decoder
is different here because of doubly nested lattice codes. The
decoding is done in two steps. The decoder starts backwardly
by decoding first t0(b) at the block b + 1 using both Ŷ1 and
Y2. Assuming that all previous messages have been correctly
decoded, :

Y2(b+ 1) =Z2(b+ 1)

+ (
√
αP )([t0(b)− Us] mod VsΛ

∗
s)

Ŷ1(b+ 1) =Ẑ1(b+ 1) + Z1(b+ 1)

+ (
√
αP )[t0(b)− Us] mod VsΛ

∗
s.

Using Lemma 3, t0(b) is decoded correctly, after using inflated
lattice lemma with proper scaling by MMSE estimator, if
R0 ≤ 1

2 log(1 + αP
Ñ

). where 1
Ñ

= 1
N1+N̂1

+ 1
N2

. The next
step is to decode t1(b) from the block b. Knowing t0(b) we
subtract it from Y2(b) and we have:

Ỹ2(b) = Z2(b) +
√
αP [t1(b)− U ] mod VΛ

+ (
√
αP )[t0(b− 1)− Us] mod VsΛ

∗
s

Ŷ1(b) = Ẑ1(b) + Z1(b) +
√
αP [t1(b)− U ] mod VΛ

+ (
√
αP )[t0(b− 1)− Us] mod VsΛ

∗
s.

Here we have a situation similar to Lemma 3, where all terms
pertaining to t0(b−1) act like the dither Us. Using the lemma,
the decoding is successful if R1 ≤ 1

2 log(1+
αP

αP+Ñ
). It is easy

to see that by correctly decoding of t0(b) and t1(b), the sum
rate of R0 +R1 is achievable which is as follows:

R0 +R1 ≤
1

2
log(1 +

P

N1 + N̂1

+
P

N2
).

Therefore we have proved that doubly nested lattices are
oblivious codes for cooperation over relay channels. �

The set of results that we presented at this section implies
that doubly nested lattice codes can be used instead of single
nested lattice codes to achieve single user channel capacity
and CF achievable rate. A similar result can be proved for

multiple nested lattice codes. The significance of this result
as we will see in the next section is that the source can use
the doubly nested lattice code without knowing whether the
relay is using DF or CF or not cooperating at all. This is very
useful in slowly fading channels where the source does not
know about the quality of source-relay channel and therefore
should pick the best one.

IV. SELECTIVE CODING STRATEGY

As we have shown that doubly nested lattice code is an
oblivious code, in this section, we use it for slowly fading
relay channels. Consider the single user Gaussian channel:

Y2 = H1X +H3X1 + Z2, Y1 = H2X + Z1,

where Z1 and Z2 are the additive noises of unit variance,
i.i.d. circularly symmetric complex Gaussian RVs with zero-
mean and unit variance. In addition to this, (H1, H2, H3)
are independent zero mean unit variance circularly symmetric
complex Gaussian RVs. The average power of source X and
relay X1 must not exceed powers P and P1, respectively.
It is assumed that the source is not aware of the channel
measurements (H1, H2, H3), the relay only knows H2 and the
destination is fully aware of all fading coefficients. Suppose
that DF and CF achievable rates are denoted as RDF and RCF.

As the channel is not known to the source, it has to transmit
with a fix rate r. If the relay uses DF, or similarly CF, all
the time the outage probability is Pr(r > RDF), or similarly
Pr(r > RCF) for CF case. The following proposition provides
a better cooperative strategy for the relay.

Proposition 1. If the source uses doubly nested lattice code,
then the following outage probability is achievable:

POut = max
DDF

P(H2 ∈ DDF) Pr(r > RDF|H2 ∈ DDF)

+ P(H2 /∈ DDF) Pr(r > RCF|H2 /∈ DDF),

where DDF ⊆ C is the decision region for the relay. Moreover
the compression noise N̂1 is chosen only according to H2.

To provide a rough sketch of the proof, suppose that the
source is using doubly nested lattice code. In general only
information of H2 is available at the relay because it does not
have any observation channels of the destination. The relay
chooses between using DF and CF by only observing H2.
Note that this is possible because the doubly nested lattice
code can be used for both choices. This leads naturally to a
decision region DDF based on which the decision is made.
Moreover the relay chooses some constant N̂1 only based on
H2 and optimize the error probability. It is interesting to see
whether the relay can select the proper coding strategy based
on H2. and switches between different cooperative strategies
to choose the best one.

In [5], the authors showed that the best decision for the relay
is to observe whether it can decode the message based on its
channel condition in which case the best choice is to pick DF
scheme as cooperative strategy. In other words, it turns out that
the optimum decision region DDF is given by the set D?DF =



Fig. 3: Outage probability vs. rate for the relay (a) at d = 0.2 and (b) at d = 0.5

{
H2 : r ≤ 1

2 log
(
1 + α|H2|2P

N1

)}
. For the case of partial CSI

at the relay, such a decision region outperforms simple DF and
CF schemes. Interestingly full CSI is not needed at the relay
to take this decision however the full CSI (H1, H2, H3) at the
relay improves the error probability only through the choice
of the best possible compression noise N̂1.

A. Numerical Results

In this part, we analyze previous results through numerical
results. We assume that P1 = P = 1. We assume all the
fading coefficients and noises are of unit variance. All nodes
lie on the same line where the source and destination have
unit distance and the relay is place at distance d from the
source. The standard path loss model is used here with path
loss exponent 2. Fig. 3 presents numerical results for d = 0.2
and d = 0.5. The inner bound on outage probability is obtained
using the cutset bound as so called achievable rate. By looking
at numerical results, we can see that the selective coding
strategy improves upon single cooperative strategies. But if
the relay is placed for example very close to the destination
or to the source, the channel qualities are ordered for most
of the fading realizations according to the relay placement
and therefore most of the time a single cooperative strategy
performs better. The improvement in this case is not significant
compared to single cooperative strategy. In other words, the
selective coding strategies improve upon single strategies if
the relay placement is such that the fading realizations evenly
make one of the strategies superior to the other.

V. CONCLUSION AND FUTURE WORKS

This work is a first step toward a general selective coopera-
tive strategies for multi-relay networks using structured codes
so that relays can switch between DF, CF and Compute-and-
Forward. The perquisite of such extension is to establish the
obliviousness of lattice codes for single relay channels. In this
work, we have proved that doubly nested lattice coding can
be used as an oblivious code for the relay channel. Future

works include extension of current oblivious lattice coding to
Gaussian relay networks.
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