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Abstract—Noisy Network Coding (NNC) was recently intro-
duced, generalizing Compress-and-Forward (CF) to multitermi-
nal networks. In this paper, we present Mixed Noisy Network
Coding scheme as the generalization of NNC where part of the
nodes are allowed to select Decode-and-Forward (DF) as their
cooperative strategy while all nodes without exception transmit
the compressed version of their observations. The compressed
version of relays is exploited at each destination to decode the
intended message. It is shown that Mixed NNC scheme performs
potentially better than NNC. In particular, for AWGN networks
it achieves a tighter ”constant gap” with respect to the cut-set
bound, provided that DF relays are chosen properly.

I. INTRODUCTION

The relay channel is conceived as the building block of mul-
titerminal cooperative networks. The main cooperative strate-
gies for the single relay channel were first developed by Cover
and El Gamal in 1979 [1], the attempts were made recently
to develop similar cooperative strategies for multiterminal
networks. Various configurations have been studied during
years, including multiple access relay channel and broadcast
relay channel [2]. Kramer et al. developed an inner bound for
a point-to-point general network using Decode-and-Forward
(DF) which achieves the capacity of the degraded multicast
network [3]. Their scheme assumes certain hierarchy amount
the relays that must be available at the source to generate the
code. Whereas it is neither preferable nor likely that a certain
hierarchy be always preserved during the communication given
the heterogeneous nature of future wireless networks. The
authors also present a generalized version of Compress-and-
Forward (CF) for multiple relay networks.

On the other hand, El Gamal et al. developed an alternative
version of CF in [4], later baptized as Noisy Network Coding.
Although the scheme performs as well as conventional CF in
single relay channel, it is strictly better when generalizing to
multiple relay channel. Lim et al. in [5] proposed the Noisy
Network Coding (NNC) scheme for the general multicast
network which includes bounds in [6], [7]. These bounds are
shown to be tight only for some specific cases like determinis-
tic and erasure network but rarely for wireless models. There-
fore, the authors in [5] showed that NNC inner bound achieves
the cut-set bound within a constant gap that is independent
of channel gains. NNC scheme utilizes ”repetitive encoding”,
meaning that the same – long – message is transmitted in
all communication blocks. The idea of sending different –
short – messages in each block without performance loss was
first used in [8] and formalized in [9] to then referred to

Short Message Noisy Network Coding (SNNC). SNNC can be
developed in different ways while in general the proof requires
backward decoding. For instance, the transmission in [9] is
done in B + L blocks but to achieve the largest rate both B
and L should tend to infinity. On the other hand in [10], L can
be finite during which the last compression index is decoded.
NNC and SNNC schemes have since then been exploited in
various scenarios as in [9]–[11] amount many others.

SNNC scheme opens up the possibility of combining DF
strategy with NNC. This path has been taken in previous con-
tributions. The authors in [10] proposed Mixed Noisy Network
Coding (MNNC) where relays are divided into two sets, relays
in the first set use NNC while those in the second one use DF.
Nevertheless, DF relays cannot help each other in decoding
source messages and the destination can only benefit from the
compression index of part of the relays since DF relays do
not employ NNC strategy. This issue introduces considerable
difficulty when attempting to compare this scheme with the
original NNC. In this paper, we develop an achievable rate
that generalizes NNC to the case of mixed coding strategy,
where DF relays exploit the help of both NNC and DF relays.
Mainly DF relays superimpose the compressed version of their
observation on the source message. Transmission is done in
B +L blocks, where relays retransmit the compression index
of block B+2 in the last L−2 blocks, and backward decoding
is used at the destination. We derive a novel gap expression for
MNNC for which it is shown that whenever DF is used, the
gap respect to the cut-set bound cannot be made independent
– constant – of the channel gains. However, provided that
DF relays are chosen properly, the constant Gap is improved
directly affected by the number of active DF relays.

This paper is organized as follows. Section II presents
definitions while Section III introduces MNNC theorem, and
the sketch of proof is relegated to Section IV. Finally, the
constant gap for AWGN networks is presented in Section V.

II. MAIN DEFINITIONS

The unicast memoryless multiple relay network consists of
a source X , a destination Y1 and relays N denoted by pairs
(Xi, Zi) with i ∈ N = {1, . . . , N}, and transition probability

W =
{
PY1Z1...ZN |XX1...XN

:

X × X1 × · · · × XN 7−→ Y1 ×Z1 × · · · × ZN
}
.

We shall denote XS = {Xi : i ∈ S} for any S ⊆ N .
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Fig. 1. Mixed Noisy Network Coding (MNNC).

Definition 1 (code and achievability): A code-C(n,Mn, εn)
for the unicast multiple relay channels consists of:
• An encoder mapping {ϕ :Mn 7−→ Xn},
• A decoder mapping {φ : Yn1 7−→Mn},
• A sequence of relay functions

{
f
(k)
i : Zi−1k 7−→ Xk

}n
i=1

for k ∈ N and the average error probability is defined as

εn , Pr {φ(Y n1 ) 6=W} .

A rate R is said to be achievable for the unicast multiple relay
network if there exists a code-C(n,Mn, εn) satisfying

lim inf
n→∞

1

n
logMn ≥ R , and lim sup

n→∞
εn = 0.

The supremum of all achievable rates is the capacity of the
unicast multiple relay network.

III. MIXED NOISY NETWORK CODING

Consider the unicast multiple relay network described in
Fig. 1. Nodes are divided in two groups, V and Vc, where:

1) Relay nodes in set Vc employ partly DF and partly CF
schemes as their cooperative strategy (e.g. nodes j, k) .

2) Relay nodes in set V use only CF (e.g. like i).
As it will be clarified later, the destination selects for decoding
only the help of a subset of nodes T ⊆ N . Transmission is
done in B+L blocks where DF relays in each block b ≤ B+2
forward the source message of the block b− 2, as it is shown
for nodes j, k in Fig. 1. Notice that this is slightly different
from conventional DF scheme where the relay forwards the
message of the previous block. The reason is that each relay
in the network is transmitting the compressed version of its
observation which introduces the possibility of full cooperation
amount the network nodes. Particularly, DF relays can use
the compression index of other relays to decode the source
message. The compression index of the block b is transmitted
only in block b+1, so DF relays have to wait until the end of
block b+1 to decode the compression index and the message
of the block b. Therefore, they can forward the message of
block b only after block b+1. Similarly to the destination, the
k-th DF relay in Vc exploits only the help of a selected subset

Tk of relays. The following theorem provides the achievable
rate corresponding to this communication strategy.

Theorem 1 (Mixed Noisy Network Coding): For the multiple
relay network, the following rate is achievable:

R ≤ max
P∈P

max
V⊆N

min

(
max
T ∈Υ (N )

min
T −V⊆S⊆T

RT (S),

min
k∈Vc

max
Tk∈Υk(N )

min
S⊆Tk

R
(k)
Tk (S)

)
(1)

where

RT (S) ,I(XXS ; ẐScY1|XScQ)

−I(ẐS ;ZS |XXT ẐScY1Q) (2)

R
(k)
Tk (S) ,I(X; ẐTkZk|V XkXTkQ) + I(XS ;Zk|V XkXScQ)

−I(ẐS ;ZS |V XkXTk ẐScZkQ). (3)

where Sc , T − S in (2) and Sc , Tk −S in (3). Moreover,
T ⊆ N , and Tk ⊆ N − {k}, and Vc = N − V . Also Υ (N )
and Υk(N ) are defined as follows:

Υ (N ) , {T ⊆ N : ∀S ⊆ T , QT (S) ≥ 0}, (4)

Υk(N ) , {T ⊆ N − {k} : ∀S ⊆ T , Q(k)
T (S) ≥ 0} (5)

with QT (S) and Q(k)
T (S) defined by

QT (S) ,I(XS ; ẐScY1|V XXScQ)

− I(ẐS ;ZS |V XXT ẐScY1Q),

Q
(k)
T (S) ,I(XS ;Zk|V XkXScQ)

− I(ẐS ;ZS |V XXkXT ẐScZkQ).

The set of all admissible distributions P is given by

P =
{
PQVXXNZN ẐNY1

= PQPV |QPX|V QPY1ZN |XXNQ∏
j∈Vc

PXj |V QPẐj |V XjZjQ

∏
j∈V

PXj |QPẐj |XjZjQ

}
.

The proof of this theorem is provided in next section. It can
be shown using the same technique in [9] that the optimization
of RT (S) in (1) can be performed over T ⊆ N instead of
T ∈ Υ (N ). Theorem 1 reduces to SNNC by choosing V = N
as in [8], [9] which is also equivalent to NNC [5]. On the
other hand, Theorem 1 differs from the cooperative mixed
NNC in [10], where the relays who use DF are not allowed to
use CF so cannot help each other when decoding messages.
Therefore, Theorem 1 generalizes and includes all previous
NNC schemes and it provides a potentially large achievable
rate. It is worth mentioning that for the single degraded relay
channel, it achieves the capacity which is not the case in NNC.
Note that because DF relays has to use forward decoding,
R

(k)
Tk (S) is smaller compared to the situation where backward

decoding is employed. The reason for this, as stated in [8],
is that the gain in NNC is achieved by delaying the decoding
until the last block. But postponing decoding to the last block
is not possible in DF relays which require decoding to re-
encode in each block, introducing the rate loss we discussed.



IV. OUTLINE OF THE PROOF OF THEOREM 1

The relays in the network are divided into two sets V and
Vc = N − V . Those relays in V are using CF while the
others are using both CF and DF. The DF relays transmit also
the compressed version of their observation, superimposed
over their DF code. The DF relay k ∈ Vc decodes the
source message of block i using the compressed version of
observation of other relays. Because the relays transmit the
compression index of the block i in the block i+ 1, the k-th
relay has to wait until the end of block i+1 to decode it and
therefore DF relays has to wait until the block i+2 to forward
the source message of the i-th block.

Moreover the relay k exploits only the compression index
of relays in Tk ⊆ N −{k}. Similarly the destination decodes
the compression index of the relays in T ⊆ N . The reason
for this choice is that the performance may be degraded if
the compression index of all relays is used. A set of relays
contribute to augmenting the rate only if certain condition is
satisfied. Each Tk and T consist of DF and CF relays. For
simplicity, we adopt the following notation:

T DF
k , Tk ∩ Vc , T CF

k , Tk ∩ V ,
T DF , T ∩ Vc , T CF , T ∩ V.

Code generation:

1) Randomly and independently generate 2nR sequences v
drawn i.i.d. from PnV (v) =

∏n
j=1 PV (vj). Index them as

v(r) with index r ∈
[
1, 2nR

]
.

2) For each k ∈ Vc and each v(r), randomly and indepen-
dently generate 2nR̂k sequences xk drawn i.i.d. from

PnXk|V (xk|v(r)) =
n∏
j=1

PXk|V (xk,j |vj(r)).

Index them as xk(r, rk), where rk ∈
[
1, 2nR̂k

]
for R̂k =

I(Zk; Ẑk|Xk, V ) + ε.
3) For each k ∈ V , randomly and independently gener-

ate 2nR̂k sequences xk drawn i.i.d. from PnXk
(xk) =∏n

j=1 PXk
(xk,j). Index them as xk(rk), where rk ∈[

1, 2nR̂k

]
for R̂k = I(Zk; Ẑk|Xk) + ε.

4) For each v(r), randomly and conditionally indepen-
dently generate 2nR sequences x drawn i.i.d. from
PnX|V (x|v(r)) =

∏n
j=1 PX|V (xj |vj). Index them as

x(r, w), where w ∈
[
1, 2nR

]
.

5) For each k ∈ Vc and each xk(r, rk), randomly
and conditionally independently generate
2nR̂k sequences ẑk each with probability
Pn
Ẑk|Xk

(ẑk|xk(r, rk)) =
∏n
j=1 PẐk|Xk

(ẑk,j |xk,j(r, rk)).

Index them as ẑk(r, rk, ŝk), where ŝk ∈
[
1, 2nR̂k

]
.

6) For each k ∈ V and each xk(rk), randomly
and conditionally independently generate 2nR̂k se-
quences ẑk each with probability Pn

Ẑk|Xk
(ẑk|xk(rk)) =

∏n
j=1 PẐk|Xk

(ẑk,j |xk,j(rk)). Index them as ẑk(rk, ŝk),

where ŝk ∈
[
1, 2nR̂k

]
.

Encoding part:
1) In every block i = [1 : B], the source sends wi using

x
(
w(i−2), wi

)
(w0 = w−1 = 1). Moreover, for blocks

i = [B+1 : B+L], the source sends the dummy message
wi = 1 known to all users.

2) For every block i = [1 : B + L], and each k ∈ Vc, the
relay k knows w(i−2) by assumption and w0 = w−1 = 1,
so it picks up v

(
w(i−2)

)
. For each i = [1 : B + 2], the

relay k after receiving zk(i), searches for at least one
index lk,i with lk,0 = 1 such that(
v(w(i−2)),xk(w(i−2), lk,(i−1)), zk(i),

ẑk(w(i−2), lk,(i−1), lk,i)
)
∈ Anε [V XkZkẐk].

The probability of finding such lk,i goes to one as n goes
to infinity due to the choice of R̂k.

3) For i = [1 : B + 2] and k ∈ Vc, relay k knows
from the previous block lk,(i−1) and w(i−2) and it sends
xk(w(i−2), lk,(i−1)). Moreover, relay k repeats lk,(B+2)

for i = [B + 3 : B + L], i.e. for L− 2 blocks.
4) For each i = [1 : B + 2], each k ∈ V , the relay k after

receiving zk(i), searches for at least one index lk,i with
lk,0 = 1 such that(
xk(lk,(i−1)), zk(i), ẑk(lk,(i−1), lk,i)

)
∈ Anε [XkZkẐk].

The probability of finding such lk,i goes to one as n goes
to infinity due to the choice of R̂k.

5) For i = [1 : B + 2] and k ∈ V , relay k knows
from the previous block lk,(i−1) and it sends xk(lk,(i−1)).
Moreover, relay k repeats lk,(B+2) for i = [B+3 : B+L],
i.e. for L− 2 blocks.

Decoding part:
1) After transmission of block i = [1 : B + 1] and for

each k ∈ Vc, the relay k decodes the message wi and
the compression index lTk,i, the compression index of
relays in Tk for the block i, with the assumption that
all messages and compression indices up to block i − 1
have been correctly decoded. Note that there are two
kind of relays inside Tk, those who employ DF and
those who are using CF. The relay k knows the message
w(i−2), w(i−1) and so v

(
w(i−2)

)
and v

(
w(i−1)

)
. Let’s

define the sequences:

Ek(ŵb, l̂Tk,b) =
{
x(w(b−2), ŵb), v(w(b−2)), xk(w(b−2)

, lk,(b−1)), zk(b),
(
xk(lk,(b−1)), ẑk(lk,(b−1), l̂k,b)

)
k∈T CF

k

,(
xk(w(b−2), lk,(b−1)), ẑk(w(b−2), lk,(b−1), l̂k,b)

)
k∈T DF

k

}
Ek(l̂Tk,b) =

{
v(w(b−1)), xk(w(b−1), lk,b), zk(b+ 1),(

xk(w(b−1), l̂k,b)
)
k∈T DF

k

,
(
xk(l̂k,b)

)
k∈T CF

k

}
.



The k-th relay searches for the unique index (ŵb, l̂Tk,b)
by looking at two consecutive blocks b and b + 1
such that Ek(ŵb, l̂Tk,b) ∈ Anε [V XXkXTk ẐTkZk] and
Ek(l̂Tk,b) ∈ Anε [V XTkXkZk]. The error probability can
be made arbitrary small provided that

I(ẐS ;ZS |V XXkXTk ẐScZk) < I(XS ;Zk|V XkXSc),

R < I(X; ẐTkZk|V XkXTk) + I(XS ;Zk|V XkXSc)

−I(ẐS ;ZS |V XkXTk ẐScZk). (6)

2) Decoding at the destination is done backwardly. Af-
ter the last block, the decoder jointly searches for the
unique indices

{
l̂k,(B+2) : k ∈ T

}
such that for all

b ∈ [B + 3 : B + L],
{
xk(l̂k,(B+1)) : k ∈ T CF

}
and

{
xk(1, l̂k,(B+1)) : k ∈ T DF

}
are jointly typical with

x(1, 1), v(1) and y
1
(b). The probability of error goes to

zero as n goes to infinity provided that for all S ⊆ T :∑
k∈S∩T CF

I(Ẑk;Zk|Xk) +
∑

k∈S∩T DF

I(Ẑk;Zk|XkV )+

≤ (L− 2)I(XS ;V XXScY1).

3) After finding correctly lk,(B+2) for all k ∈ T and since
w(B+1) = 1, the destination decodes jointly the message
and all the compression indices (wb, lT ,(b+1)) for each
b = [1 : B] where lT ,b = (lk,b)k∈T . The decoding
is done backwardly, assuming that (wb+2, lT ,(b+2)) have
been correctly decoded. Define the following sequence:

E(ŵb,l̂T ,(b+1)) =

{
x(ŵb, w(b+2)), v(ŵb), y1(b+ 2),(

xk(l̂k,(b+1)), ẑk(l̂k,(b+1), lk,(b+2))
)
k∈T CF

,(
xk(ŵb, l̂k,(b+1)), ẑk(ŵb, l̂k,(b+1), lk,(b+2))

)
k∈T CF

}
The destination finds the unique pair of indices
(ŵb, l̂T ,(b+1)) such that E(ŵb, l̂T ,(b+1)) ∈
Anε [V XXT ẐT Y1]. The probability of error goes to
zero as n→∞, similar to [10] provided that

I(XS ; ẐScY1|XXScV )− I(ẐS ;ZS |V XXT ẐScY1) > 0

R < I(XXS ; ẐScY1|XSc)− I(ẐS ;ZS |XXT ẐScY1)

By choosing finite L but large enough, the previous
inequalities along with (6) prove Theorem 1, where the
rate is achieved by letting (B,n) tend to infinity. At the
end, a time sharing random variable Q can be added.

V. CONSTANT GAP FOR GAUSSIAN NETWORKS

In this section, we study constant gaps for AWGN networks.
Before proceeding to the general case, we first consider the gap
of DF rate for the single AWGN relay channel. CF constant
gap follows the same line as [5]. Consider the Gaussian relay
channel with average power inputs E[X2] ≤ P , E[X2

1 ] ≤ P
and channel outputs defined as follows:{

Y1 = h3X + h2X1 + N1

Z1 = h1X + N2, Ẑ1 = Z1 + N̂2.
(7)

It is easy to check that the second term in the DF rate,
corresponding to namely MAC part of the channel, appears
untouched in the cut-set bound (CB) and the gap is zero
between the term for MAC part and thus only the difference
between first two terms affects the gap. This can be bounded
as follows (β is the correlation coefficient):

∆(CB,DF) =
1

2
log

(
1 +

βv1P + βv3P

N

)
− 1

2
log

(
1 +

βv1P

N

)
≤ 1

2
log

(
1 +

v3
v1

)
.

Observe that, unlike NNC, the gap for DF cannot be indepen-
dent of the channel gains v1 and v3.

Now we move to the unicast multiple relay network. To
this end, consider an AWGN Gaussian network with N relays,
single source and destination of N + 2 nodes. The relays are
indexed as usual with index in the set N = {1, . . . , N}. For
simplicity, we associate the source with the index 0, i.e. X0 =
X and the destination with the index N+1. Therefore, there is
bijection from the set of nodes to the set {0, 1, . . . , N,N+1}.
The transmitters’ set is denoted byM = {0, 1, . . . , N} and the
receivers’ set is denoted by D = {1, . . . , N,N +1}. By {gij}
we denote the channel gains from the i-th node to the node j.
The noise at the node j is denoted by Nj which assumed to
zero mean of unit variance complex Gaussian random variable.
The input and output relation are defined as follows:{

Y (D) = G(D, T )X(M) +N(D)
Ẑ(N ) = Z(N ) + N̂(N )

(8)

where Y (D) = [Z1 . . . ZNY1]
T . G(D, T ) is the channel gain

matrix where evidently gii = 0. Let G(S1,S2) denote the
set [gij : i ∈ S1, j ∈ S2] and similarly for any A, A(S1) =
[ai : i ∈ S1] . All nodes transmit with power less or equal than
P . By N̂(S) we denote the compression noise vector which
is assumed to be Gaussian with unit variance. The covariance
matrix of the channel inputs is K(S) = [Pρij ] for i, j ∈ S.

To evaluate the constant gap for MNNC from Theorem 1,
we assume T = N with all inputs chosen as Gaussian. Given
a set of channel gains, assume all relays in Vc use DF while
those in V use CF. The constant gap for the conventional NNC
has been evaluated in [5],

∆(CB,NNC) , max
S⊆N

(
|S|
2

+
min{|S|, |Sc|}

2
log(2|S|)

)
≤ N + 2

4
log(4N + 4). (9)

Proposition 1 (constant gap for MNNC): For unicast multi-
ple relay networks, if the source-relay channel is good enough
for DF relays, the constant gap can be stated as follows:

∆(CB,MNNC) , max
N−V⊆S⊆N[

|S|
2

+
1 +min{|S|, |Sc|}

2
log
(
4(|V| − |Sc|)

)]
.

When only one relay is using DF, the gap is bounded by
N+2
4 log(4N − 4) which is clearly less than NNC scheme.



To prove the proposition, we first find an upper bound on
the cut-set bound using the following lemma:

Lemma 1: Suppose that

A =

[
A11 A12

A21 A22

]
and B =

[
A11 0
0 A22

]
are positive definite matrices then 2B � A.
To prove the lemma, it is enough to see that 2B−A is positive
definite. Now we move to bounding cut-set bound. Suppose
that Sc∗ = Sc ∪ {N + 1}, Vc∗ = Vc ∪ {0} and SCF = S ∩ V
denoting the CF relays. The cut-set bound reads as

I(XXS ;ZScY1|XSc) =
1

2
log

(
∣∣∣∣I(Sc∗) +G

[
K(Vc∗) K(Vc∗,SCF)

K(SCF,Vc∗) K(SCF)

]
GT
∣∣∣∣ ).

Now the determinant can be bounded as follows:∣∣∣∣I(Sc∗) +G

[
K(Vc∗) K(Vc∗,SCF)

K(SCF,Vc∗) K(SCF)

]
GT
∣∣∣∣

(a)

≤
∣∣∣∣2I(Sc∗) + 2|SCF|G

[
K(Vc∗) 0

0 PI(SCF)

]
GT
∣∣∣∣ (10)

where (a) comes from Lemma 1, and from Tr(SCF)I(SCF) �
K(SCF). By rewriting (10) similar too [5], we obtain

R≤1

2
log

(∣∣∣∣I(Sc∗) + 1

2
G

[
K(Vc∗) 0

0 PI(SCF)

]
GT
∣∣∣∣)

+
min{|Sc|+ 1, |S|+ 1}

2
log
(
(4|SCF|)

)
. (11)

The term I(ẐS ;ZS |XXN ẐScY1) is lower bounded by
I(ẐS ;ZS |XXN ) = |S|/2. Notice in the first part of RN (S),
unlike NNC, the relays from Vc are not independent and hence

I(XXS ; ẐScY1|XSc) ≥ I(XXS ; ẐSc Ŷ1|XSc)

=
1

2
log

(∣∣∣∣I(Sc∗) + 1

2
G

[
K(Vc∗) 0

0 PI(SCF)

]
GT
∣∣∣∣)

where the matrix K(Vc∗), is the one that maximizes CB. So
the gap between RN (S) and its corresponding CB becomes:

∆1(CB,MNNC) , max
N−V⊆S⊆N

[
|S|
2
+

min{|Sc|+ 1, |S|+ 1}
2

log
(
(4|SCF|)

)]
. (12)

In order to bound the other part of the rate related to DF
relays, note that Y1 is absent in the rate expression as for DF
in the single AWGN relay channel, while it is always present
in the CB. Thus, the gap between the rate and the CB, no
matter how good we manage to bound it, will depend on the
channel gains between Y1 and inputs. For sake of clarity, let
us assume that each DF relay is decoding the source message
alone, i.e., without using the compression index of other relays
yielding Tk = ∅. Given this choice, the rate R(k)

Tk is reduced
to R(k)

DF = I(X;Zk|V Xk). First, observe that

Zk = g0kX +
∑
i∈V

gikXi +
∑
i∈Vc

gikXi +Nk,

where similarly V is the set of users using CF. From which
the mutual information can be stated as follows:

I(X;Zk|V Xk) =
1

2
log
[

1 +
|g0k|2(1− ρ20k)P∑

i∈V |gik|2P +
∑
i∈Vc |gik|2(1− ρ2ik)P + 1

]
.

The cut-set bound corresponding to this rate is calculated as:

I(XXN\{k};ZkY1|Xk) =
1

2
log
(∣∣I(2) +GK(M\{k})GT

∣∣) .
As it is expected, this gap, say ∆2(CB,MNNC), is
not independent of the channel gains. The final gap
∆(CB,MNNC) would be the maximum of ∆1(CB,MNNC)
and ∆2(CB,MNNC) and it is dependent on the channel gains.
However, if DF relays are chosen correctly then they should
not contribute to increasing the gap and the dominant term
in the gap is ∆1(CB,MNNC) which is independent of the
channel gain. Now the question is to find the proper condition
for choosing the DF relays. One solution is to choose the
relays with g0k enough large compared to other gains which
indicates that the channel quality of source-relay is very good.
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