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Abstract—This paper investigates composite multiterminal net-
works, consisting of a set of multiterminal channels indexed or
parametrized by a vector of channel parameters θ. The channel
in operation is drawn from the sample set with probability
Pθ . Instead of finding the maximum achievable rate subject
to a –asymptotically– small error probability (EP), we look at
the behavior of the error probability for a fixed coding rate.
The asymptotic spectrum of error probability (ASEP) is then
introduced as a novel and more general performance measure for
composite networks. Indeed, the ASEP is defined as the smallest
probability that the EP exceeds a desirable error ε for a coding
rate r. It is shown that the ASEP is directly related to the ε-
capacity of the network and assuming memoryless channels the
ASEP can be bounded by a new region referred to as the full
error region. Moreover, every code with a rate belonging to this
region yields asymptotic EP equal to one.

I. INTRODUCTION

Multiterminal networks such as computer networks, wire-
less sensor networks and Ad hoc networks are the essential
part of modern telecommunication systems. Nevertheless the
time-varying nature of wireless channels, e.g. due to fading
and user mobility, does not allow the nodes to have full knowl-
edge of all channel parameters involved in the communication.
During years, an ensemble of works has been done on channel
models for uncertainty. The compound channel, introduced
by Wolfowitz [1], consists in a set of channels indexed by
θ, WΘ = {Wθ}θ∈Θ out of which the channel in operation
is chosen and remains fixed during the communication (see
[2], [3] and references therein). Unlike compound channels, a
probability distribution is introduced over channels, i.e. θ, for
averaged (or mixed) channels, discussed by Ahlswede [4] and
further studied in [5], where the expected error probability
is used as the reliability criteria. Ahlswede showed that the
capacity of averaged semicontinuous stationary channels is in
general larger than the corresponding compound channel and
hence the statistical knowledge of channels at the transmitter
appears in general to be beneficial. However, the weak capacity
of averaged and compound channel can be non-positive for
some channels, like slowly fading Gaussian channels where
the worst channel has non-positive capacity. In order to deal
with these scenarios, the notion of composite channels where
the current channel is drawn according to a given probability
distribution (PD) is used [6], [7]. The notion of capacity versus
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outage was introduced as the maximum achievable rate subject
to a certain tolerable outage probability. It was shown [8] that
this notion may not be precise enough to characterize the EP
over channels that do not satisfy the strong converse property.

In this paper, instead of finding the maximum achievable
rate for an asymptotically small EP, we fix the desired coding
rate r to study characteristics of the EP of the composite
network. Indeed, the EP is taken as a random function of
the channel parameters and then the notion of asymptotic
spectrum of EP (ASEP) for a code C with rate r and EP
ε ∈ [0, 1) is introduced. We show that most of measures of
performance for composite networks can be derived from the
ASEP. For fixed rate r and the error probability ε, the ASEP
indicates the minimum possible probability that the asymptotic
EP exceeds ε for a given r. The aim is to characterize the
ASEP of composite memoryless networks. We derive the full
error region for which every code with transmission rates in
this region yields EP equal to one. More specifically, we prove
that the closure of the cutset bounds on memoryless networks
falls into the full error region. As a result of this, every
memoryless network for which the cutset bound is achievable
satisfies the strong converse property. Furthermore, if there
is an unique code that achieves the capacity of all networks
in the set, the asymptotic spectrum of EP coincides with the
conventional notion of outage probability.

This paper is organized as follows. Main definitions are
provided in Section II while Section III studies bounds on the
ASEP. Finally, Section IV present an outline of the proofs.

Notation: The information density is defined by [3]

i(Mn; Y) , log
PY n|Mn

(Y|Mn)

PY n(Y)
,

for an arbitrary sequence of n-dimensional outputs Y =
(Y1, . . . , Yn) ∈ Y n where Mn is an uniform RV over the
index set Mn = {1, . . . ,Mn}. We will use lim sup in
probability of the random sequence Zn defined by

p- lim sup
n→∞

Zn , inf
{
β : lim

n→∞
Pr{Zn > β} = 0

}
.

II. DEFINITIONS AND PROBLEM STATEMENT

The Composite Multiterminal Network (CMN) with m-
nodes is characterized by a set Wθ of conditional PDs{
PY n1θ···Y nmθ|Xn1θ···Xnmθ : X n

1 × . . .×X n
m 7−→ Y n

1 × . . .×Y n
m

}



Pn
Y n
1θ···Y n

mθ|Xn
1θ···Xn

mθ

(Xiθ,Yiθ) (Xjθ,Yjθ)

(X1θ,Y1θ) (Xmθ,Ymθ)

(M(ik)
n )k !=i (M(jk)

n )j !=k

θ ∼ Pθ

Fig. 1. Composite Multiterminal Network (CMN)

indexed with any vector of parameters θ ∈ Θ, and where each
node i = {1, . . . ,m} is equipped with a transmitter Xiθ ∈X n

i

and a receiver Yiθ ∈ Y n
i , as described in Fig. 1.

Each channel, denoted by Wn
θ , is assumed to be stationary

and memoryless. Let Pθ denote any arbitrary PD on the
set of network parameters (or channel indices) Θ. Before
the communication starts θ ∈ Θ is assumed to be drawn
from Pθ remaining fixed during the entire transmission. The
set M(ki)

n , {1, . . . ,M (ki)
n } represents the set of possible

messages to be sent (in n channel uses) from source k to the
i-th destination with i ∈ {1, . . . ,m} \ {k}. If there are no
messages intended to node i from node k we set M(ki)

n = ∅.
Definition 1 (code and error probability): An

(
n,M

(kj)
n ,

(εn,θ)θ∈Θ
)
-code for the CMN consists of:

• A sequence of encoding mappings for t = {1, . . . , n} at
each node k ∈ {1, . . . ,m},

ϕ
(k)
t,θ :

⊗
i={1,...,m}\{k}

M(ki)
n ⊗ Y t−1

k 7−→Xk

whereM(ki)
n is the message set from node k intended to

destination node i, for every i = {1, . . . ,m} \ {k}.
• A decoder mapping at each node k ∈ {1, . . . ,m},

φ
(jk)
n,θ : Y n

k ⊗
⊗

i∈{1,...,m}\{k}
M(ki)

n 7−→M(jk)
n

for all source node j 6= k ∈ {1, . . . ,m}. Decoding sets
corresponding to each decoding mapping are defined by
D(jk)
l,θ , φ

(jk)
n,θ

−1
(l) for all messages l ∈ M(jk)

n , which
corresponds to the decoding sets for messages l intended
to node k from node j.

• The error event E(jk)θ (l) ,
{
Y nkθ /∈ D

(jk)
l,θ

}
for all pairs

j 6= k ∈ {1, ...,m} and every l ∈M(jk)
n is defined as the

event that the message l from node j cannot be correctly
decoded at destination k. Therefore the error event for
the network is the union of all error events E(jk)θ (l) over
all sources j and destinations k with messages l:

εn,θ , Pr

⋃
j 6=k

⋃
l∈M(jk)

n

{
Y nkθ /∈ D(jk)

l,θ ,M(jk)
n = l

} .

For the rest we simply denote a code by C and emphasize that
εn,θ is a random variable. The EP from the node j to k, ε(jk)n,θ ,
can be similarly defined. It will always be presupposed that
we are dealing with the kind of networks where full CSI is
not available at each node.

A. Reliability Functions for Composite Networks

An alternative approach is the study of the behavior of error
probability ε

(jk)
n,θ , εn,θ as n goes to infinity for fixed rates. For

the rest we assume that εn,θ converges in distribution to εθ
and since εn,θ is uniformly integrable the limits remain intact.

Definition 2 (reliability functions): Given the tolerable er-
ror 0 ≤ ε < 1 and a tuple of rates r = (rjk)j 6=k∈{1,...,m}.
Assume a

(
n,M

(jk)
n , (εn,θ)θ∈Θ

)
-code such that for all pairs

j 6= k ∈ {1, . . . ,m} we have

lim inf
n→∞

1

n
logM (jk)

n ≥ rjk.

The following reliability functions can be defined:
• The achievable EP for a code C is characterized by

ε-p(r,C) = p- lim sup
n→∞

εn,θ (1)

which means that the EP will be asymptotically less than
the achievable EP ε-p(r,C) with probability 1. Notice that
there may be no code satisfying lim

n→∞
Pθ(εn,θ > ε) = 0

and thus for each 0 ≤ ε < 1, there is non-zero probability
that the error falls over it (e.g. Gaussian networks with
fading). Condition in (1) can be relaxed to δ−achievable

ε-δ(r,C) = δ- lim sup
n→∞

εn,θ (2)

where for any 0 ≤ δ < 1

δ- lim sup
n→∞

εn,θ = inf
{
α : lim

n→∞
Pθ(εn,θ > α) ≤ δ

}
.

• The average EP is characterized for a code C as follows

ε̄(r,C) = lim
n→∞

Eθ[εn,θ]. (3)

This may lead to the achievability where ε is said to be
achievable if there is a code C such that ε is larger than
the average error, which implies the existence of codes
with EP less than ε in L1 but not everywhere, meaning
that for some θ ∈ Θ the asymptotic EP may fall over
ε̄. This shows that the average error used in [4] may not
precise enough in general to characterize the EP, as it will
be clear later.

• The throughput EP is defined for a code C by

εT (r,C) = sup
0≤α<1

lim
n→∞

αPθ(εn,θ > α). (4)

This takes into account the probability that EP falls over
the desired ε. Indeed, ε is said achievable if there is code
C such that ε is larger than εT (r,C).

It is particularly interesting to define the smallest achievable
EP of a composite network by

ε-p(r) = inf
C
ε-p(r,C) = inf

C
p- lim sup

n→∞
εn,θ, (5)



where the infimum is taken over all codes. This means that
for ε smaller than ε-p(r), there is a code such that we have:

lim
n→∞

Pθ(εn,θ > ε) > 0.

Notice that the meaning of the smallest achievable EP is that
if ε is bigger ε-p(r), then information can be sent at rate r and
EP less than ε with probability tending to 1. To avoid trivial
results in some cases δ−smallest achievable EP is defined by

ε-δ(r) = inf
C
ε-δ(r,C) = inf

C
δ- lim sup

n→∞
εn,θ (6)

where infimum is taken again over all codes. This means that
for ε bigger than ε-δ(r), there is a code such that εn,θ is less
than ε with at least probability 1− δ.

Therefore, on one hand the expected EP (3) may not always
be the adequate reliability function for CMNs, but on the
other hand (1) may yield very pessimistic rates. The next
section introduces a fundamental quantity, referred to as the
asymptotic spectrum of EP (ASEP).

B. Asymptotic Spectrum of Error Probability (ASEP)

In the previous section, based on different criteria, we
defined the smallest achievable EP for a fixed r. We now
investigate the asymptotic cumulative PD of EP for a fixed
vector of transmission rates r.

Definition 3 (asymptotic spectrum of EP): For every 0 ≤
ε ≤ 1 and transmission rates r = (rjk)j 6=k∈{1,...,m}, the
asymptotic spectrum of EP for a code C, we denote

E(r, ε,C) = lim
n→∞

Pθ(εn,θ > ε). (7)

The asymptotic spectrum of EP for CMN is defined as:

E(r, ε) = inf
C

lim
n→∞

Pθ(εn,θ > ε), (8)

where the infimum is taken over all
(
n,M

(jk)
n , (εn,θ)θ∈Θ

)
-

codes with rates satisfying

lim inf
n→∞

1

n
logM (jk)

n ≥ rjk,

for all pairs j 6= k ∈ {1, . . . ,m}.
Note that E(r, ε) indicates what is the smallest probability

that the error falls over ε. The next proposition provides a re-
lation between the ASEP and the previous notions introduced.

Proposition 1: For the CMN with transmission rates r, the
ASEP implies all reliability functions previously introduced.
• The smallest achievable (resp. to δ−smallest) EP:

ε-p(r) = inf {0 ≤ ε < 1 : E(r, ε) = 0} ,
ε-δ(r) = inf {0 ≤ ε < 1 : E(r, ε) ≤ δ} .

• The throughput EP of a code C

εT (r,C) = sup
0≤ε<1

εE(r, ε,C).

• The expected EP of a code C

ε̄(r,C) =

∫ 1

0

E(r, ε,C)dε.

Proof: The proof of first three equalities follows directly
from the definition. For the last inequality, using the fact that
εn,θ is positive and bounded we have:

ε̄(r,C) = lim
n→∞

E[εn,θ] =

∫ 1

0

lim
n→∞

Pθ(εn,θ > t)dt

where uniform integrability and Lebesgue dominated conver-
gence theorem is used to exchange limits.

III. BOUNDS ON THE ASYMPTOTIC SPECTRUM OF EP

Consider first a non-composite network where transmission
is at the rates r. Then if a code achieves a EP ε its rate must
necessarily belong to the ε-capacity region. Reciprocally, if the
rate belongs to ε-capacity region, then there is a code such that
it achieves EP ε. This leads to the next result.

Theorem 1: For the composite multiterminal network with
the random parameter θ, it holds for every 0 ≤ ε < 0 that

Pθ
(

lim sup
n→∞

εn,θ > ε
)
≥ Pθ(r /∈ Cε,θ), (9)

where Cε,θ is the ε-capacity of the network Wθ for a given θ.

Proof: According to the definition, for each θ, r is inside
Cε,θ if lim sup

n→∞
εn,θ ≤ ε which proves the theorem.

Notice that in the case of composite networks, a transmitter
which is unaware of θ has a single code of fixed rate for all
θ. Then, if for those θ for which the rate does not belong to
Cε,θ the EP εn,θ will exceed ε. Whereas if the rate belongs to
Cε,θ then it is not guaranteed that εn,θ will not exceed ε.

Suppose that transmitters fix their encoding function based
on ϕ(k)

t and let φ be defined as the ensemble of such functions.
For every θ and φ, let Rε,θ(φ) denote the ε-achievable region
such as if the rate belongs to it, then the EP is less or equal
than ε for the choice of φ. Clearly, we have the identity

E(r, ε,C) = Pθ(r /∈ Rε,θ(φ)).

Corollary 1: For the error probability εn,θ and ε-capacity
defined as before, the asymptotic spectrum of EP satisfies:

Pθ(r /∈ Cε,θ) ≤ E(r, ε) ≤ inf
φ

Pθ(r /∈ Rε,θ(φ)). (10)

Remark 1: There exist composite networks, e.g. composite
binary symmetric channels (CBSC), where a uniformly dis-
tributed code yields the best code for each channel in the set.
In this case, we have the next identity:

E(r, ε) = Pθ(r /∈ Cε,θ). (11)

A. Composite Binary Symmetric Averaged Channel (CBSC)

A binary symmetric averaged channel (BSC) with three pa-
rameters is defined by three BSCs (B1,B2,B3) with crossover
probabilities p1 < p2 < p3 ≤ 1

2 and weights α1, α2, α3

summing to one. The averaged channel is then defined as
B = α1B1 + α2B2 + α3B3. Denote by C(p) = 1 − H2(p)
the capacity of a BSC with parameter p. Kieffer [9] derived
the capacity of this averaged BSC and showed that the channel



does not satisfy the strong converse property. Moreover, the
ε-capacity of this channel is characterized by

Cε =


C(p3), 0 < ε < α3

C(λ(p2,p3)), ε = α3

C(p2), α3 < ε < α3 + α2

C(λ(p1,p2)), ε = α3 + α2

C(p1), α3 + α2 < ε < 1

(12)

where λ(p1,p2) is defined as λ(p,q) =
log
(

1−p
1−q

)
log
(

1−p
1−q

)
+log

(
q
p

) .
Let us assume that there is additional randomness associated

to this channel, and hence p3 takes random values between p2
and 1

2 with measure Pp3 (θ = p3). In addition to this assume
that the source transmits a code with r ≤ C(p2). Therefore,
the last three terms in the asymptotic spectrum of EP are
automatically zero, which yields

E(r, ε) =

 Pp3

(
r > C(p3)

)
, 0 < ε < α3

Pp3

(
r > C(λ(p2,p3))

)
, ε = α3

0, α3 < ε < 1
(13)

The smallest achievable EP writes as

εp-(r) = inf {0 ≤ ε < 1 : E(r, ε) = 0} ≤ α3.

In other words, the EP is less than α3 with probability 1 for
r < C(p2). On the other hand, the expected EP writes as

ε̄(r) =

∫ 1

0

E(r, ε)dε = α3 × Pp3

(
r > C(p3)

)
.

Observe that the expected EP dismisses the information about
the EP at the point ε = α3. This implies that the expected EP
is not enough general to provide a full characterization of the
EP. Finally, the throughput EP writes as

ε̄T (r) = sup
0≤ε<1

εE(r, ε) = α3 × Pp3

(
r > C(λ(p2,p3))

)
.

Here the information about ε less than α3 is lost in the above
notion. This example clearly shows the relation between all
these reliability notions and how the asymptotic spectrum of
the EP can be used to derive them.

B. Outage Probability and Full Error Region

The main problem in characterizing the ASEP is that
capacity is not known for most of multiterminal networks and
consequently neither the ε-capacity. For instance, we need to
focus on inner and outer bounds to delimitate the ASEP via
other ways. The notion of outage probability Pout appears to
be adequate. This is defined as the probability that a code
with rate r cannot be correctly decoded Pout = Pθ(r /∈ Cθ).
Furthermore, if each channel θ satisfies the strong converse
property (Cθ = Cε,θ for 0 ≤ ε < 1) and if there exists a
unique best code for each channel in the set, it follows that
the ASEP turns to be a Bernoulli trial with parameter Pout.

Denote by Rθ(φ) any achievable region known for each
θ and φ. Then if the rate r is inside the region, the error
probability tends to zero becoming less than ε, for any 0 <
ε < 1. For fixed rate r, measure of the channels with EP larger

than ε is less or equal to the measure of channels with non-zero
EP, implying that the ASEP is essentially less or equal than
the probability that the rate r. Similarly for the rate r, number
of those channels with the error probability bigger than ε is
less or equal to probability of those channels with EP equal
to one. Hence it is interesting to see for which values of r,
the EP tends to one. The following definition will be useful
for the characterization of the asymptotic EP.

Definition 4 (full error region): Consider a multiterminal
channel {Wn}∞n=1 with m sources and destinations. The full
error region is the region S ⊂ Rm(m−1)

+ such that for all codes(
n,M

(ij)
n , εn

)
, if the rate vector

r =
(

lim inf
n→∞

1

n
logM (ij)

n

)
is inside the region S then lim

n→∞
εn = 1.

The previous definition simply indicates that the EP becomes
1 for all nodes whose coding rate belong to this region.The
following theorem provides converse limits of the ASEP.

Theorem 2: The CMN with random parameter θ satisfies

Pθ(r ∈ Sθ) ≤ E(r, ε) ≤ inf
φ

Pθ(r /∈ Rθ(φ)), (14)

where Rθ is the achievable region of the network Wθ and and
Sθ is the full error region of the corresponding channel θ.

The most general known outer bound for multiterminal
networks is the cut-set bound [10], [11]. This states that any
rate outside the region formed by cutset bound will have
non-zero EP. In the next theorem, we prove that the error
is necessarily one for any rate outside this region. This result
provides an outer bound on the full error region.

Theorem 3: Consider a memoryless multiterminal network
with m nodes. For any code

(
n,M

(ij)
n , εn

)
with rates r =(

lim inf
n→∞

1

n
logM (ij)

n

)
that fall outside the region SCB where:

SCB = co
⋃
P∈P

{
(R(S) ≥ 0, ∀S ⊆ {1, 2, . . . ,m}) :

R(S) < I(XS ;YSc |XSc)
}

and R(S) =
∑
i∈S,j∈Sc Rij , then lim

n→∞
εn = 1.

Consider the composite finite field linear deterministic net-
work where the channel in operation is chosen from a set of
similar networks, indexed by θ ∼ Pθ. The nodes are divided
into sources T , destinations D and relays R. Every channel
has the cutset bound as capacity [12] and satisfies the strong
converse property. Moreover, there is a unique optimum PD for
all channels in the set. Then, the outage probability coincide
with the asymptotic spectrum of EP of this network, as stated
by the next corollary.

Corollary 2: For the composite finite field linear determin-
istic network, the ASEP for each (r, ε) is as follows:

E(r, ε) = Pθ(r /∈ CDN,θ), (15)

where CDN,θ is defined by{
(R(S) ≥ 0) : R(S) < min

S⊆R
min
d∈D

H(ZScθYdθ|XTXScθ)
}
,



and the input distribution is chosen at each source to be
independent and uniformly distributed.

It should be mentioned here that the r.h.s. of (15) is
independent of ε, which means that the outage probability is
a sufficient measure for the performance of this network.

IV. OUTLINE OF THE PROOF OF THEOREM 3

We present an outline of the proof of Theorem 3 but without
proving the main lemmas. For sets S1,S2 ⊂ {1, . . . ,m} with
cardinalities ‖S1‖, ‖S2‖, let M(S1S2)

n be an ‖S1‖‖S2‖-tuple(
M

(ij)
n

)
i∈S1,j∈S2 . The next result is Verdu-Han’s lemma [3]

extended to the multiterminal network.
Theorem 4: For all codes

(
n,M

(ij)
n , εn

)
with i 6= j ∈

{1, . . . ,m} the error probability satisfies

εn ≥ Pr
[
for some S

∣∣ 1

n
i(M(SSc)

n ;Y nSc) ≤
1

n
logM (SSc)

n − γ
]

− (2m − 1) exp(−γn).

For every γ > 0 and every S ⊆ {1, . . . ,m}, where
i(M

(SSc)
n ;Y nSc) is the corresponding information density.

The general idea behind the proof is to show that for the
memoryless network and the rate outside the closure of cut-set
bound the probability on the right hand side tends to one for
all γ > 0, as n goes to infinity. In other words, the information
spectrum of 1

n i(M
(SSc)
n ;Y nSc) is placed on the left-hand side

of cut-set bound values. More precisely, the proof follows two
general steps. First, it is shown that the information density is
less –in measure– than another RV referred to U (S)

n as n→∞.
In the next step, it is shown that U (S)

n is less –in measure–
than the cut set bound. So if 1

n logM
(ij)
n − γ is larger than

the cutset bound as n → ∞ then the probability in Theorem
4 will tend to 1 as n→∞.

A. First Step

For arbitrary inputs and outputs, define the quantity:

U (S)
n =

1

n

n∑
j=1

log
Wj(YScj |XScj , XSj)
PYScj ,XScj (YScj |XScj)

,

where Wj is the j-th use of the channel. The channel is
stationary and memoryless and then Wj remains constant,
namely W for all j. Note that Y nk is not i.i.d. in general, but
for simplicity we drop the subscripts when implicitly clear.

Lemma 1: For U (S)
n defined as above, we have

lim
n→∞

P
(

for all S
∣∣U (S)
n >

1

n
i(M(SSc)

n ;Y nSc)
)

= 1. (16)

B. Second Step

The second step is based on the following lemma.
Lemma 2: For U (S)

n defined as above, there is a probability
distribution PXSXSc for each xnN such that:

lim
n→∞

E
[

Pr
(

for all S
∣∣U (S)
n < I(XS ;YSc |XSc)

)∣∣∣Xn
N

]
= 1,

Note that given xnS , x
n
Sc , the PD is Wn(Y nSc |xnS , xnSc). Using

the fact that the channel is memoryless, it can be seen that

log
Wj(YScj |xScj , xSj)

P(YScj |xScj)
are independent for all j, and we are faced with sum of
independent RVs. Moreover, we have to assume that the
channel Wj is the same for all j.

C. Final Step

To finalize the proof, the following inequality is needed:

Pr
[
for some S

∣∣ 1
n
i(M(SSc)

n ;Y nSc) ≤
∑

i∈S,j∈Sc

1

n
logM (ij)

n − γ
]

≥
∑
xnN

PXnN (xnN ) Pr
(

for all S
∣∣U (S)
n >

1

n
i(M(SSc)

n ;Y nSc),

U (S)
n < I(XS ;YSc |XSc)|xnN

)
× 1
[( 1

n
logM (ij)

n

)
i,j∈N ,i6=j

/∈ SCB

]
.

Finally, from Theorem 4, the above lemmas and the last
inequality by letting n→∞:

lim
n→∞

εn ≥ lim
n→∞

1
[( 1

n
logM (ij)

n

)
i,j∈N ,i6=j

/∈ SCB

]
. (17)

Then, it is easy to check that the rates falling outside the
closure of cutset bounds lead to error probability equal to 1.
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